Skip to main content

Vasoactive Peptides

  • Chapter
  • First Online:
Disorders of Blood Pressure Regulation

Abstract

Hypertension develops from a complex interaction of environmental and genetic factors although more than 90% of cases do not have clear etiology. Vasoactive peptide systems are among the major contributing factors to abnormal sustained blood pressure levels together with increased sympathetic nervous system activity, long-term high sodium intake, and inadequate dietary intake of potassium and calcium. For instance, an altered renin secretion related to the elevated activity of the renin-angiotensin aldosterone system (RAAS) leads to the formation of the vasoconstrictor peptide angiotensin II. Both hyperactivity of the angiotensin-converting enzyme (ACE), resulting in overproduction of angiotensin II (Ang II), and deactivation of the vasodilator kallikrein-kinin system (KKS) also alter the vascular tone. Otherwise, reduction of nitric oxide (NO) bioavailability also induces abnormalities in vessel resistance due to vascular inflammation and increased activity of vascular growth factors and metalloproteinases. There is evidence that elevated vasopressin (AVP) and neuropeptide Y (NPY) levels contribute to hypertension in a subset of human subjects by alterations in the corporal water homeostasis and acting centrally as an inhibitor of sympathetic outflow, respectively. Disturbances in the natriuretic peptide system inhibit renin release and sodium reabsorption as well as enhance the central sympathetic outflow, adrenal catecholamine release, and actions of angiotensin II and aldosterone. Although not directly linked to peptidic systems, adipocytokines, oxidative stress, and cells of both the innate and adaptive immune systems will be addressed in this chapter as recent contributions to cardiovascular dysfunction and end-organ damage in hypertension. Thus, taken together, dysregulation in vasoactive peptide systems, adipocyte hormones, redox balance, and cellular immunogenicity compose a current keystone for maintained high blood pressure levels, cardiac remodeling, and vascular stiffness in hypertensive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

Ang I:

Angiotensin I

Ang II:

Angiotensin II

Ang III:

Angiotensin III

Ang IV:

Angiotensin IV

ANP:

Atrial natriuretic peptide

AT1R:

Angiotensin II type 1 receptor

AT2R:

Angiotensin II type 2 receptor

AVP:

Vasopressin

B1:

Bradykinin type 1 receptor

B2:

Bradykinin type 2 receptor

BNP:

Brain natriuretic peptide

CD8:

Cluster of differentiation 8

CD-80:

Cluster of differentiation 80

CD-86:

Cluster of differentiation 86

DNA:

Deoxyribonucleic acid

ERK-1:

Extracellular signal-regulated kinases types 1

ERK-2:

Extracellular signal-regulated kinases types 2

Hsp27:

Heat shock protein 27

IFN-γ:

Interferon gamma

IL-1β:

Interleukin-1β

IL-23:

Interleukin-23

IL-6:

Interleukin-6

LVH:

Left ventricular hypertrophy

MAPK:

Mitogen-activated protein kinase

MMP:

Metalloproteinase

MMP-2:

Metalloproteinase-2

MMP-9:

Metalloproteinase-9

MMPs:

Metalloproteinases

NO:

Nitric oxide

NPY:

Neuropeptide Y

NTS:

Nucleus of the tractus solitarius

PGI2 :

Prostacyclin

RAAS:

Renin-angiotensin-aldosterone system

ROS:

Reactive oxygen species

TGF β-1:

Transforming growth factor β-1

TIMPs:

Tissue inhibitor of metalloproteinases

References

  1. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109(11):1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13(8 Suppl B):9–20

    PubMed  Google Scholar 

  3. Nguyen G (2006) Renin/prorenin receptors. Kidney Int 69(9):1503–1506

    Article  CAS  PubMed  Google Scholar 

  4. Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 51(5):1259–1264

    Article  CAS  PubMed  Google Scholar 

  5. Giestas A, Palma I, Ramos MH (2010) Renin-angiotensin-aldosterone system (RAAS) and its pharmacologic modulation. Acta Medica Port 23(4):677–688

    CAS  Google Scholar 

  6. Bernstein KE, Ong FS, Blackwell WL et al (2013) A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 65(1):1–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pellacani A, Brunner HR, Nussberger J (1994) Plasma kinins increase after angiotensin-converting enzyme inhibition in human subjects. Clin Sci (Lond) 87(5):567–574

    Article  CAS  Google Scholar 

  8. Campbell DJ (1995) Angiotensin converting enzyme (ACE) inhibitors and kinin metabolism: evidence that ACE inhibitors may inhibit a kininase other than ACE. Clin Exp Pharmacol Physiol 22(12):903–911

    Article  CAS  PubMed  Google Scholar 

  9. Tom B, Dendorfer A, Danser AH (2003) Bradykinin, angiotensin-(1-7), and ACE inhibitors: how do they interact? Int J Biochem Cell Biol 35(6):792–801

    Article  CAS  PubMed  Google Scholar 

  10. Erdos EG, Marcic BM (2001) Kinins, receptors, kininases and inhibitors—where did they lead us? Biol Chem 382(1):43–47

    Article  CAS  PubMed  Google Scholar 

  11. Schmaier AH (2003) The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol Regul Integr Comp Physiol 285(1):R1–R13

    Article  CAS  PubMed  Google Scholar 

  12. Erdos EG, Tan F, Skidgel RA (2010) Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension 55(2):214–220

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sharma JN (2013) The kinin system in hypertensive pathophysiology. Inflammopharmacology 21(1):1–9

    Article  CAS  PubMed  Google Scholar 

  14. van Kats JP, Schalekamp MA, Verdouw PD et al (2001) Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int 60(6):2311–2317

    Article  PubMed  Google Scholar 

  15. Matsusaka T, Niimura F, Shimizu A et al (2012) Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol 23(7):1181–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karnik SS, Unal H, Kemp JR et al (2015) International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological Angiotensinergic stimuli [corrected]. Pharmacol Rev 67(4):754–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi G, Boscaro M, Ronconi V, Funder JW (2005) Aldosterone as a cardiovascular risk factor. Trends Endocrinol Metab 16(3):104–107

    Article  CAS  PubMed  Google Scholar 

  18. Funder JW (2007) The role of aldosterone and mineralocorticoid receptors in cardiovascular disease. Am J Cardiovasc Drugs 7(3):151–157

    Article  CAS  PubMed  Google Scholar 

  19. Gaddam KK, Pimenta E, Husain S, Calhoun DA (2009) Aldosterone and cardiovascular disease. Curr Probl Cardiol 34(2):51–84

    Article  PubMed  Google Scholar 

  20. Nagata K (2008) Mineralocorticoid antagonism and cardiac hypertrophy. Curr Hypertens Rep 10(3):216–221

    Article  CAS  PubMed  Google Scholar 

  21. Chappell MC (2016) Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 310(2):H137–H152

    Article  PubMed  Google Scholar 

  22. Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20(5):953–970

    Article  CAS  PubMed  Google Scholar 

  23. Chappell MC (2012) Nonclassical renin-angiotensin system and renal function. Compr Physiol 2(4):2733–2752

    PubMed  PubMed Central  Google Scholar 

  24. Bader M (2013) ACE2, angiotensin-(1-7), and mas: the other side of the coin. Pflugers Arch 465(1):79–85

    Article  CAS  PubMed  Google Scholar 

  25. Kramkowski K, Mogielnicki A, Leszczynska A, Buczko W (2010) Angiotensin-(1-9), the product of angiotensin I conversion in platelets, enhances arterial thrombosis in rats. J Physiol Pharmacol 61(3):317–324

    CAS  PubMed  Google Scholar 

  26. McKinney CA, Fattah C, Loughrey CM et al (2014) Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling. Clin Sci (Lond) 126(12):815–827

    Article  CAS  Google Scholar 

  27. Ferrario CM, Varagic J, Habibi J et al (2009) Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol 296(4):H1184–H1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jessup JA, Trask AJ, Chappell MC et al (2008) Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol 294(6):H2614–H2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad S, Varagic J, Groban L et al (2014) Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep 16(5):429

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahmad S, Simmons T, Varagic J et al (2011) Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLoS One 6(12):e28501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahmad S, Wei CC, Tallaj J et al (2013) Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. J Am Soc Hypertens 7(2):128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coutinho DC, Foureaux G, Rodrigues KD et al (2014) Cardiovascular effects of angiotensin a: a novel peptide of the renin-angiotensin system. J Renin-Angiotensin-Aldosterone Syst 15(4):480–486

    Article  CAS  PubMed  Google Scholar 

  33. Lautner RQ, Villela DC, Fraga-Silva RA et al (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112(8):1104–1111

    Article  CAS  PubMed  Google Scholar 

  34. Reaux-Le Goazigo A, Iturrioz X, Fassot C et al (2005) Role of angiotensin III in hypertension. Curr Hypertens Rep 7(2):128–134

    Article  CAS  PubMed  Google Scholar 

  35. Fournie-Zaluski MC, Fassot C, Valentin B et al (2004) Brain renin-angiotensin system blockade by systemically active aminopeptidase a inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci U S A 101(20):7775–7780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao J, Marc Y, Iturrioz X et al (2014) A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci (Lond) 127(3):135–148

    Article  CAS  Google Scholar 

  37. Padia SH, Kemp BA, Howell NL et al (2008) Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension 51(2):460–465

    Article  CAS  PubMed  Google Scholar 

  38. Carey RM, Padia SH (2013) Role of angiotensin AT(2) receptors in natriuresis: intrarenal mechanisms and therapeutic potential. Clin Exp Pharmacol Physiol 40(8):527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vanderheyden PM (2009) From angiotensin IV binding site to AT4 receptor. Mol Cell Endocrinol 302(2):159–166

    Article  CAS  PubMed  Google Scholar 

  40. Demaegdt H, De Backer JP, Lukaszuk A et al (2012) Angiotensin IV displays only low affinity for native insulin-regulated aminopeptidase (IRAP). Fundam Clin Pharmacol 26(2):194–197

    Article  CAS  PubMed  Google Scholar 

  41. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94

    Article  PubMed  Google Scholar 

  42. Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J Clin Invest 104(11):1603–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuwahara K, Kinoshita H, Kuwabara Y et al (2010) Myocardin-related transcription factor a is a common mediator of mechanical stress- and neurohumoral stimulation-induced cardiac hypertrophic signaling leading to activation of brain natriuretic peptide gene expression. Mol Cell Biol 30(17):4134–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McGrath MF, de Bold AJ (2005) Determinants of natriuretic peptide gene expression. Peptides 26(6):933–943

    Article  CAS  PubMed  Google Scholar 

  45. Matsubara H, Hirata Y, Yoshimi H et al (1987) Effects of steroid and thyroid hormones on synthesis of atrial natriuretic peptide by cultured atrial myocytes of rat. Biochem Biophys Res Commun 145(1):336–343

    Article  CAS  PubMed  Google Scholar 

  46. Kawano H, Nagayoshi Y, Soejima H et al (2008) B-type natriuretic peptide after hormone therapy in postmenopausal women with chest pain and normal coronary angiogram. Menopause 15(2):352–356

    Article  PubMed  Google Scholar 

  47. Russell-Jones D, Gough S (2012) Recent advances in incretin-based therapies. Clin Endocrinol (Oxf) 77(4):489–499

    Article  CAS  Google Scholar 

  48. Qian JY, Haruno A, Asada Y et al (2002) Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis, and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ Res 91(11):1063–1069

    Article  CAS  PubMed  Google Scholar 

  49. Villar IC, Panayiotou CM, Sheraz A et al (2007) Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res 74(3):515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clerico A, Recchia FA, Passino C, Emdin M (2006) Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol 290(1):H17–H29

    Article  CAS  PubMed  Google Scholar 

  51. Rubattu S, Sciarretta S, Valenti V et al (2008) Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens 21(7):733–741

    Article  CAS  PubMed  Google Scholar 

  52. Woodard GE, Rosado JA (2008) Natriuretic peptides in vascular physiology and pathology. Int Rev Cell Mol Biol 268:59–93

    Article  CAS  PubMed  Google Scholar 

  53. Potter LR, Yoder AR, Flora DR et al (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 191:341–366

    Article  CAS  Google Scholar 

  54. Calvieri C, Rubattu S, Volpe M (2012) Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl) 90(1):5–13

    Article  CAS  Google Scholar 

  55. Mangiafico S, Costello-Boerrigter LC, Andersen IA et al (2013) Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J 34(12):886–893c

    Article  CAS  PubMed  Google Scholar 

  56. Volpe M (2014) Natriuretic peptides and cardio-renal disease. Int J Cardiol 176(3):630–639

    Article  PubMed  Google Scholar 

  57. Bakris G, Bursztyn M, Gavras I et al (1997) Role of vasopressin in essential hypertension: racial differences. J Hypertens 15(5):545–550

    Article  CAS  PubMed  Google Scholar 

  58. Bolignano D, Cabassi A, Fiaccadori E et al (2014) Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med 52(10):1447–1456

    Article  CAS  PubMed  Google Scholar 

  59. Goncharova ND (2013) Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation. Front Endocrinol (Lausanne) 4:26

    Google Scholar 

  60. Mavani GP, DeVita MV, Michelis MF (2015) A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med (Lausanne) 2:19

    Google Scholar 

  61. Kwon TH, Frokiaer J, Nielsen S (2013) Regulation of aquaporin-2 in the kidney: a molecular mechanism of body-water homeostasis. Kidney Res Clin Pract 32(3):96–102

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manning M, Misicka A, Olma A et al (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24(4):609–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee EW, Michalkiewicz M, Kitlinska J et al (2003) Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. J Clin Invest 111(12):1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hodges GJ, Jackson DN, Mattar L, Johnson JM, Shoemaker JK (2009) Neuropeptide Y and neurovascular control in skeletal muscle and skin. Am J Physiol Regul Integr Comp Physiol 297(3):R546–R555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reichmann F, Holzer P (2016) Neuropeptide Y: a stressful review. Neuropeptides 55:99–109

    Article  CAS  PubMed  Google Scholar 

  66. Shanks J, Herring N (2013) Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am J Physiol Regul Integr Comp Physiol 305(12):R1411–R1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herring N, Paterson DJ (2009) Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp Physiol 94(1):46–53

    Article  CAS  PubMed  Google Scholar 

  68. Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152(2):189–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schulz R (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 47:211–242

    Article  CAS  PubMed  Google Scholar 

  70. Palei AC, Sandrim VC, Cavalli RC, Tanus-Santos JE (2008) Comparative assessment of matrix metalloproteinase (MMP)-2 and MMP-9, and their inhibitors, tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in preeclampsia and gestational hypertension. Clin Biochem 41(10–11):875–880

    Article  CAS  PubMed  Google Scholar 

  71. Belo VA, Souza-Costa DC, Lana CM et al (2009) Assessment of matrix metalloproteinase (MMP)-2, MMP-8, MMP-9, and their inhibitors, the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in obese children and adolescents. Clin Biochem 42(10-11):984–990

    Article  CAS  PubMed  Google Scholar 

  72. Goncalves FM, Jacob-Ferreira AL, Gomes VA et al (2009) Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta 403(1-2):173–177

    Article  CAS  PubMed  Google Scholar 

  73. Yasmin MECM, Wallace S et al (2005) Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 25(2):372

    Article  CAS  PubMed  Google Scholar 

  74. Derosa G, D’Angelo A, Ciccarelli L et al (2006) Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium 13(3):227–231

    Article  CAS  PubMed  Google Scholar 

  75. Onal IK, Altun B, Onal ED et al (2009) Serum levels of MMP-9 and TIMP-1 in primary hypertension and effect of antihypertensive treatment. Eur J Intern Med 20(4):369–372

    Article  CAS  PubMed  Google Scholar 

  76. Friese RS, Rao F, Khandrika S et al (2009) Matrix metalloproteinases: discrete elevations in essential hypertension and hypertensive end-stage renal disease. Clin Exp Hypertens 31(7):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  78. Marchesi C, Dentali F, Nicolini E et al (2012) Plasma levels of matrix metalloproteinases and their inhibitors in hypertension: a systematic review and meta-analysis. J Hypertens 30(1):3–16

    Article  CAS  PubMed  Google Scholar 

  79. Benjamin MM, Khalil RA (2012) Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXS 103:209–279

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fontana V, Silva PS, Gerlach RF, Tanus-Santos JE (2012) Circulating matrix metalloproteinases and their inhibitors in hypertension. Clin Chim Acta 413(7-8):656–662

    Article  CAS  PubMed  Google Scholar 

  81. Sabbatini AR, Barbaro NR, de Faria AP et al (2016) Increased circulating tissue inhibitor of metalloproteinase-2 is associated with resistant hypertension. J Clin Hypertens (Greenwich) 18(10):969–975

    Article  CAS  Google Scholar 

  82. Li P, Zhang XN, Pan CM et al (2011) Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes. Horm Metab Res 43(7):464–469

    Article  CAS  PubMed  Google Scholar 

  83. Iacobellis G, Petramala L, Cotesta D et al (2010) Adipokines and cardiometabolic profile in primary hyperaldosteronism. J Clin Endocrinol Metab 95(5):2391–2398

    Article  CAS  PubMed  Google Scholar 

  84. Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52(15):1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Northcott JM, Yeganeh A, Taylor CG et al (2012) Adipokines and the cardiovascular system: mechanisms mediating health and disease. Can J Physiol Pharmacol 90(8):1029–1059

    Article  CAS  PubMed  Google Scholar 

  86. Patel L, Buckels AC, Kinghorn IJ et al (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 300(2):472–476

    Article  CAS  PubMed  Google Scholar 

  87. Yaturu S, Daberry RP, Rains J, Jain S (2006) Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine 34(3-4):219–223

    Article  CAS  PubMed  Google Scholar 

  88. Bokarewa M, Nagaev I, Dahlberg L et al (2005) Resistin, an adipokine with potent proinflammatory properties. J Immunol 174(9):5789–5795

    Article  CAS  PubMed  Google Scholar 

  89. Hong SJ, Park CG, Seo HS et al (2004) Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press 13(4):236–242

    Article  CAS  PubMed  Google Scholar 

  90. de Faria AP, Ritter AM, Sabbatini AR et al (2016) Deregulation of soluble adhesion molecules in resistant hypertension and its role in cardiovascular remodeling. Circ J 80(5):1196–1201

    Article  PubMed  Google Scholar 

  91. de Faria AP, Modolo R, Fontana V, Moreno H (2014) Adipokines: novel players in resistant hypertension. J Clin Hypertens (Greenwich) 16(10):754–759

    Article  Google Scholar 

  92. McMaster WG, Kirabo A, Madhur MS, Harrison DG (2015) Inflammation, immunity, and hypertensive end-organ damage. Circ Res 116(6):1022–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu J, Saleh MA, Kirabo A et al (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126(1):50–67

    Article  PubMed  Google Scholar 

  94. Kirabo A, Fontana V, de Faria AP et al (2014) DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 124(10):4642–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heitor Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yugar-Toledo, J.C., Faria, A.P.C., Moreno, H. (2018). Vasoactive Peptides. In: Berbari, A., Mancia, G. (eds) Disorders of Blood Pressure Regulation. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59918-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59918-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59917-5

  • Online ISBN: 978-3-319-59918-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics