Skip to main content
Log in

Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Natriuretic peptides (NPs) exert well-characterized protective effects on the cardiovascular system, such as vasorelaxation, natri- and diuresis, increase of endothelial permeability, and inhibition of renin–angiotensin–aldosterone system. It has been reported that they also possess antihypertrophic and antifibrotic properties and contribute actively to cardiac remodeling. As a consequence, they are involved in several aspects of cardiovascular diseases. Antihypertrophic and antifibrotic actions of NPs appear to be mediated by specific signaling pathways within a more complex cellular network. Elucidation of the molecular mechanisms underlying the effects of NPs on cardiac remodeling represents an important research objective in order to gain more insights on the complex network leading to cardiac hypertrophy, ventricular dysfunction, and transition to heart failure, and in the attempt to develop novel therapeutic agents. The aim of the present article is to review well-characterized molecular mechanisms underlying the antihypertrophic and antifibrotic effects of NPs in the heart that appear to be mainly mediated by guanylyl cyclase type A receptor. In particular, we discuss the calcineurin/NFAT, the sodium exchanger NHE-1, and the TGFβ1/Smad signaling pathways. The role of guanylyl cyclase type B receptor, along with the emerging functional significance of natriuretic peptide receptor type C as mediators of CNP antihypertrophic and antifibrotic actions in the heart are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Piechota M, Banach M, Jacon A, Rysz J (2008) Natriuretic peptides in cardiovascular diseases. Cell Mol Biol Lett 13:155–181

    Article  PubMed  CAS  Google Scholar 

  2. Battistoni A, Rubattu S, Volpe M. (2011) Circulating biomarkers with preventive, diagnostic and prognostic implications in cardiovascular diseases. Int J Cardiol

  3. Qi W, Mathisen P, Kjekshus J, Simonsen S, Bjornerheim R, Endresen K, Hall C (2001) Natriuretic peptides in patients with aortic stenosis. Am Heart J 142:725–732

    Article  PubMed  CAS  Google Scholar 

  4. Nishikimi T, Yoshihara F, Morimoto A, Ishikawa K, Ishimitsu T, Saito Y, Kangawa K, Matsuo H, Omae T, Matsuoka H (1996) Relationship between left ventricular geometry and natriuretic peptide levels in essential hypertension. Hypertension 28:22–30

    PubMed  CAS  Google Scholar 

  5. Cavallero S, González GE, Puyó AM, Rosón MI, Pérez S, Morales C, Hertig CM, Gelpi RJ, Fernández BE (2007) Atrial natriuretic peptide behaviour and myocyte hypertrophic profile in combined pressure and volume-induced cardiac hypertrophy. J Hypertens 25:1940–1950

    Article  PubMed  CAS  Google Scholar 

  6. Rubattu S, Sciarretta S, Valenti V, Stanzione R, Volpe M (2008) Natriuretic peptides: an update on bioactivity, potential therapeutic use and implication in cardiovascular diseases. Am J Hypertens 21:733–741

    Article  PubMed  CAS  Google Scholar 

  7. Ellmers LJ, Scott NJ, Piuhola J, Maeda N, Smithies O, Frampton CM, Richards AM, Cameron VA (2007) Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J Mol Endocrinol 38:245–257

    Article  PubMed  CAS  Google Scholar 

  8. Kishimoto I, Tokudome T, Horio T, Garbers DL, Nakao K, Kangawa K (2009) Natriuretic peptide signaling via guanylyl cyclase (GC)-A: an endogenous protective mechanism of the heart. Curr Cardiol Rev 5:45–51

    Article  PubMed  CAS  Google Scholar 

  9. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci U S A 98:2703–2706

    Article  PubMed  CAS  Google Scholar 

  10. Holtwick R, van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407

    PubMed  CAS  Google Scholar 

  11. Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984

    Article  PubMed  CAS  Google Scholar 

  12. Rosenkranz AC, Woods RL, Dusting GJ, Ritchie RH (2003) Antihypertrophic actions of the natriuretic peptides in adult rat cardiomyocytes: importance of cyclic GMP. Cardiovasc Res 57:515–522

    Article  PubMed  CAS  Google Scholar 

  13. Rubattu S, Bigatti G, Evangelista A, Lanzani C, Stanzione R, Zagato L, Manunta P, Marchitti S, Venturelli V, Bianchi G et al (2006) Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J Am Coll Cardiol 48:499–505

    Article  PubMed  CAS  Google Scholar 

  14. Rubattu S, Sciarretta S, Ciavarella GM, Venturelli V, De Paolis P, Tocci G, De Biase L, Ferrucci A, Volpe M (2007) Reduced levels of pro-atrial natriuretic peptide in hypertensive patients with metabolic syndrome and their relationship with LVH. J Hypertens 25:833–839

    Article  PubMed  CAS  Google Scholar 

  15. Kapoun AM, Liang F, O'Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461

    Article  PubMed  CAS  Google Scholar 

  16. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M et al (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A 97:4239–4244

    Article  PubMed  CAS  Google Scholar 

  17. Ogawa Y, Tamura N, Chusho H, Nakao K (2001) Brain natriuretic peptide appears to act locally as an antifibrotic factor in the heart. Can J Physiol Pharmacol 79:723–729

    Article  PubMed  CAS  Google Scholar 

  18. Richards AM (2011) C-type natriuretic peptide and cardiac fibrosis. Hypertension 57:154–155

    Article  PubMed  CAS  Google Scholar 

  19. Bueno OF, van Rooij E, Molkentin JD, Doevendans PA, De Windt LJ (2002) Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res 53:806–821

    Article  PubMed  CAS  Google Scholar 

  20. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  21. Molkentin JD (2004) Calcineurin–NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475

    Article  PubMed  CAS  Google Scholar 

  22. Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, Antos CL, Shelton JM, Bassel-Duby R, Olson EN et al (2001) Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 98:3328–3333

    Article  PubMed  CAS  Google Scholar 

  23. Rothermel BA, Vega RB, Williams RS (2003) The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc Med 13:15–21

    Article  PubMed  CAS  Google Scholar 

  24. Tamirisa P, Blumer KJ, Muslin AJ (1999) RGS4 inhibits G-protein signaling in cardiomyocytes. Circulation 99:441–447

    PubMed  CAS  Google Scholar 

  25. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107:7000–7005

    Article  PubMed  CAS  Google Scholar 

  26. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  27. Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD (2000) Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101:2431–2437

    PubMed  CAS  Google Scholar 

  28. Saito T, Fukuzawa J, Osaki J, Sakuragi H, Yao N, Haneda T, Fujino T, Wakamiya N, Kikuchi K, Hasebe N (2003) Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol 35:1153–1160

    Article  PubMed  CAS  Google Scholar 

  29. Eto Y, Yonekura K, Sonoda M, Arai N, Sata M, Sugiura S, Takenaka K, Gualberto A, Hixon ML, Wagner MW et al (2000) Calcineurin is activated in rat hearts with physiological left ventricular hypertrophy induced by voluntary exercise training. Circulation 101:2134–2137

    PubMed  CAS  Google Scholar 

  30. Oliveira RS, Ferreira JC, Gomes ER, Paixão NA, Rolim NP, Medeiros A, Guatimosim S, Brum PC (2009) Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signaling pathway in heart failure mice. J Physiol 587:3899–3910

    Article  PubMed  CAS  Google Scholar 

  31. Shimoyama M, Hayashi D, Zou Y, Takimoto E, Mizukami M, Monzen K, Kudoh S, Hiroi Y, Yazaki Y, Nagai R et al (2000) Calcineurin inhibitor attenuates the development and induces the regression of cardiac hypertrophy in rats with salt-sensitive hypertension. Circulation 102:1996–2004

    PubMed  CAS  Google Scholar 

  32. Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H (2002) Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation 105:677–679

    Article  PubMed  CAS  Google Scholar 

  33. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118

    Article  PubMed  CAS  Google Scholar 

  34. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693

    Article  PubMed  CAS  Google Scholar 

  35. Lim HW, De Windt LJ, Mante J, Kimball TR, Witt SA, Sussman MA, Molkentin JD (2000) Reversal of cardiac hypertrophy in transgenic disease models by calcineurin inhibition. J Mol Cell Cardiol 32:697–709

    Article  PubMed  CAS  Google Scholar 

  36. Tokudome T, Horio T, Kishimoto I, Soeki T, Mori K, Kawano Y, Kohno M, Garbers DL, Nakao K, Kangawa K (2005) Calcineurin-nuclear factor of activated T cells pathway-dependent cardiac remodeling in mice deficient in guanylyl cyclase A, a receptor for atrial and brain natriuretic peptides. Circulation 111:3095–3104

    Article  PubMed  CAS  Google Scholar 

  37. Tokudome T, Kishimoto I, Horio T, Arai Y, Schwenke DO, Hino J, Okano I, Kawano Y, Kohno M, Miyazato M et al (2008) Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117:2329–2339

    Article  PubMed  CAS  Google Scholar 

  38. Klaiber M, Kruse M, Völker K, Schröter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Londoño JE et al (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 105:583–595

    Article  PubMed  CAS  Google Scholar 

  39. Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y et al (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860

    Article  PubMed  CAS  Google Scholar 

  40. Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG (2009) Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 84:209–217

    Article  PubMed  CAS  Google Scholar 

  41. Jankowski M (2009) GATA4, a new regulator of cardiac fibroblasts, is sensitive to natriuretic peptides. Cardiovasc Res 84:176–177

    Article  PubMed  CAS  Google Scholar 

  42. Karmazyn M, Kilić A, Javadov S (2008) The role of NHE-1 in myocardial hypertrophy and remodelling. J Mol Cell Cardiol 44:647–653

    Article  PubMed  CAS  Google Scholar 

  43. Cingolani HE, Ennis IL (2007) Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100

    Article  PubMed  Google Scholar 

  44. Khandoudi N, Ho J, Karmazyn M (1994) Role of Na(+)-H + exchange in mediating effects of endothelin-1 on normal and ischemic/reperfused hearts. Circ Res 75:369–378

    PubMed  CAS  Google Scholar 

  45. Ito N, Kagaya Y, Weinberg EO, Barry WH, Lorell BH (1997) Endothelin and angiotensin II stimulation of Na + −H + exchange is impaired in cardiac hypertrophy. J Clin Invest 99:125–135

    Article  PubMed  CAS  Google Scholar 

  46. Cingolani HE (1999) Na+/H + exchange hyperactivity and myocardial hypertrophy: are they linked phenomena? Cardiovasc Res 44:462–467

    Article  PubMed  CAS  Google Scholar 

  47. Young MJ (2008) Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr Opin Nephrol Hypertens 17:174–180

    Article  PubMed  CAS  Google Scholar 

  48. Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW (2003) Increased Na+/H + −exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res 57:1015–1024

    Article  PubMed  CAS  Google Scholar 

  49. Baartscheer A, Hardziyenka M, Schumacher CA, Belterman CN, van Borren MM, Verkerk AO, Coronel R, Fiolet JW (2008) Chronic inhibition of the Na+/H+-exchanger causes regression of hypertrophy, heart failure, and ionic and electrophysiological remodeling. Br J Pharmacol 154:1266–1275

    Article  PubMed  CAS  Google Scholar 

  50. Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Opthof T, Fiolet JW (2005) Chronic inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents cellular remodeling in heart failure. Cardiovasc Res 65:83–92

    Article  PubMed  CAS  Google Scholar 

  51. Pérez NG, Piaggio MR, Ennis IL, Garciarena CD, Morales C, Escudero EM, Cingolani OH, Chiappe de Cingolani G, Yang XP, Cingolani HE (2007) Phosphodiesterase 5A inhibition induces Na+/H + exchanger blockade and protection against myocardial infarction. Hypertension 49:1095–1103

    Article  PubMed  Google Scholar 

  52. Dostal DE, Baker KM (1998) Angiotensin and endothelin: messengers that couple ventricular stretch to the Na+/H + exchanger and cardiac hypertrophy. Circ Res 83:870–873

    PubMed  CAS  Google Scholar 

  53. Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, van Eickels M, Schlatter E et al (2005) Enhanced activity of the myocardial Na+/H + exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317

    Article  PubMed  CAS  Google Scholar 

  54. Kilic A, Rajapurohitam V, Sandberg SM, Zeidan A, Hunter JC, Said Faruq N, Lee CY, Burnett JC Jr, Karmazyn M (2010) A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway. Cardiovasc Res 88:434–442

    Article  PubMed  CAS  Google Scholar 

  55. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol

  56. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  PubMed  CAS  Google Scholar 

  57. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  PubMed  CAS  Google Scholar 

  58. Ramos-Mondragón R, Galindo CA, Avila G (2008) Role of TGF-beta on cardiac structural and electrical remodeling. Vasc Health Risk Manag 4:1289–1300

    PubMed  Google Scholar 

  59. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827

    Article  PubMed  CAS  Google Scholar 

  60. Wang B, Omar A, Angelovska T, Drobic V, Rattan SG, Jones SC, Dixon IM (2007) Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am J Physiol Heart Circ Physiol 293:H1282–H1290

    Article  PubMed  CAS  Google Scholar 

  61. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106:130–135

    Article  PubMed  CAS  Google Scholar 

  62. Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991

    Article  PubMed  Google Scholar 

  63. Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S (2006) Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 79:1357–1365

    Article  PubMed  CAS  Google Scholar 

  64. Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schluter K-D, Bohm M (2002) Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1. Am J Physiol Heart 283:H1253–H1262

    CAS  Google Scholar 

  65. Brooks WW, Conrad CH (2000) Myocardial fibrosis in transforming growth factor beta (1) heterozygous mice. J Mol Cell Cardiol 32:187–195

    Article  PubMed  CAS  Google Scholar 

  66. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM et al (2010) Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest 120:3520–3529

    Article  PubMed  CAS  Google Scholar 

  67. Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG (1997) Overexpression of transforming growth factor-beta1 and insulin-like growth factor-1 in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96:874–881

    PubMed  CAS  Google Scholar 

  68. Sanderson JE, Lai KB, Shum IO, Wei S, Chow LT (2001) Transforming growth factor-beta(1) expression in dilated cardiomyopathy. Heart 86:701–708

    Article  PubMed  CAS  Google Scholar 

  69. Lim H, Zhu YZ (2006) Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci 63:2584–2596

    Article  PubMed  CAS  Google Scholar 

  70. Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102:185–192

    Article  PubMed  CAS  Google Scholar 

  71. Buxton IL, Duan D (2008) Cyclic GMP/protein kinase G phosphorylation of Smad3 blocks transforming growth factor-beta-induced nuclear Smad translocation: a key antifibrogenic mechanism of atrial natriuretic peptide. Circ Res 102:151–153

    Article  PubMed  CAS  Google Scholar 

  72. He JG, Chen YL, Chen BL, Huang YY, Yao FJ, Chen SL, Dong YG (2010) B-type natriuretic peptide attenuates cardiac hypertrophy via the transforming growth factor-ß1/smad7 pathway in vivo and in vitro. Clin Exp Pharmacol Physiol 37:283–289

    Article  PubMed  CAS  Google Scholar 

  73. Stingo AJ, Clavell AL, Heiblein DM, Wei CM, Pittelkow MR, Burnett JC Jr (1992) Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 263:H1318–H1321

    PubMed  CAS  Google Scholar 

  74. Honing ML, Smits P, Morrison PJ, Burnett JC Jr, Rabelink TJ (2001) C-type natriuretic peptide-induced vasodilation is dependent on hyperpolarization in human forearm resistance vessels. Hypertension 37:1179–1183

    PubMed  CAS  Google Scholar 

  75. Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE (1997) Mechanisms of natriuretic peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 35:158–167

    Article  PubMed  CAS  Google Scholar 

  76. Furuya M, Miyazaki T, Honbou N, Kawashima K, Ohno T, Tanaka S, Kangawa K, Matsuo H (1995) C-type natriuretic peptide inhibits intimal thickening after vascular injury. Ann NY Acad Sci 748:517–523

    Article  PubMed  CAS  Google Scholar 

  77. Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S, Yoshihara F, Kawano Y, Kohno M, Kangawa K (2004) Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology 145:2131–2140

    Article  PubMed  CAS  Google Scholar 

  78. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K (2005) C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol 45:608–616

    Article  PubMed  CAS  Google Scholar 

  79. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K (2003) Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 144:2279–2284

    Article  PubMed  CAS  Google Scholar 

  80. Del Ry S, Cabiati M, Lionetti V, Emdin M, Recchia FA, Giannessi D (2008) Expression of C-type natriureitc peptide and of its receptor NPR-B in normal and failing heart. Peptides 29:2208–2215

    Article  PubMed  Google Scholar 

  81. Kalra PR, Clague JR, Bolger AP, Anker SD, PooleWilson PA, Struthers AD, Coats AJ (2003) Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation 107:571–573

    Article  PubMed  CAS  Google Scholar 

  82. Dickey DM, Flora DR, Bryan PM, Xu X, Chen Y, Potter LR (2007) Differential regulation of membrane guanylyl cyclases in congestive heart failure: natriuretic peptide receptor (NPR)-B, not NPR-A, is the predominant natriureitc peptide receptor in the failing heart. Endocrinology 148:3518–3522

    Article  PubMed  CAS  Google Scholar 

  83. Pagel-Langenickel I, Buttgereit J, Bader M, Langenickel TH (2007) Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med 85:797–810

    Article  PubMed  CAS  Google Scholar 

  84. Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J et al (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci U S A 103:4735–4740

    Article  PubMed  CAS  Google Scholar 

  85. Herring N, Zamman JA, Paterson DJ (2001) Natriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway. Am J Physiol Heart Circ Physiol 281:H2318–H2327

    PubMed  CAS  Google Scholar 

  86. Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC Jr (2011) The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide. Hypertension 57:201–207

    Article  PubMed  CAS  Google Scholar 

  87. Rubattu S, Sciarretta S, Morriello A, Calvieri C, Battistoni A, Volpe M (2010) NPR-C: a component of the natriuretic peptide family with implications in human diseases. J Mol Med 88:889–897

    Article  PubMed  CAS  Google Scholar 

  88. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci U S A 96:7403–7408

    Article  PubMed  CAS  Google Scholar 

  89. Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Aca Sci U S A 100:1426–1431

    Article  CAS  Google Scholar 

  90. Rose RA, Lomax AE, Giles WR (2003) Inhibition of L-type Ca2+ current by C-type natriuretic peptide in bullfrog atrial myocytes: an NPR-C-mediated effect. Am J Physiol Heart Circ Physiol 285:H2454–H2462

    PubMed  CAS  Google Scholar 

  91. Horikawa YT, Panneerselvam M, Kawaraguchi Y, Tsutsumi YM, Ali SS, Balijepalli RC, Murray F, Head BP, Niesman IR, Rieg T et al (2011) Cardiac-specific overexpression of caveolin-3 attenuates cardiac hypertrophy and increases natriuretic peptide expression and signaling. J Am Coll Cardiol 31(57):2273–2283

    Article  Google Scholar 

  92. Cataliotti A, Tonne JM, Bellavia D, Martin FL, Oehler EA, Harders GE, Campbell JM, Peng KW, Russell SJ, Malatino LS et al (2011) Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation 123:1297–1305

    Article  PubMed  CAS  Google Scholar 

  93. Hayashi M, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Tsutsui T, Horie H, Ohnishi M, Kinoshita M (2001) Intravenous atrial natriuretic peptide prevents left ventricular remodeling in patients with first anterior acute myocardial infarction. J Am Coll Cardiol 37:1820–1826

    Article  PubMed  CAS  Google Scholar 

  94. Sezai A, Hata M, Wakui S, Niino T, Takayama T, Hirayama A, Saito S, Minami K (2007) Efficacy of continuous low-dose hANP administration in patients undergoing emergent coronary artery bypass grafting for acute coronary syndrome. Circ J 71:1401–1407

    Article  PubMed  CAS  Google Scholar 

  95. Hillock RJ, Frampton CM, Yandle TG, Troughton RW, Lainchbury JG, Richards AM (2008) B-type natriuretic peptide infusions in acute myocardial infarction. Heart 94:617–622

    Article  PubMed  CAS  Google Scholar 

  96. Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T, Seguchi O, Myoishi M, Minamino T, Ohara T et al (2007) Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomized trials. Lancet 370:1483–1493

    Article  PubMed  CAS  Google Scholar 

  97. Hata N, Seino Y, Tsutamoto T, Hiramitsu S, Kaneko N, Yoshikawa T, Yokoyama H, Tanaka K, Mizuno K, Nejima J et al (2008) Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure—the PROTECT multicenter randomized controlled study. Circ J 72:1787–1793

    Article  PubMed  CAS  Google Scholar 

  98. Abraham WT, Adams KF, Fonarow GC, Costanzo MR, Berkowitz RL, LeJemtel TH, Cheng ML, Wynne J (2005) In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications. An analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol 46:57–64

    Article  PubMed  Google Scholar 

  99. Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut EK, Porter CB, Proulx G, Qian C, Block AJ (2000) Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomized trial. Lancet 356:615–620

    Article  PubMed  CAS  Google Scholar 

  100. Cuculi F, Erne P (2011) Combined neutral endopeptidases inhibitors. Expert Opin Invest Drugs 20:457–463

    CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by a grant (Ricerca Corrente) from the Italian Ministry of Health to MV and SR; by the 5‰ grant to MV and SR; and by the Ingenious HyperCare European project to MV.

Conflicts of interest

There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Volpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvieri, C., Rubattu, S. & Volpe, M. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med 90, 5–13 (2012). https://doi.org/10.1007/s00109-011-0801-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0801-z

Keywords

Navigation