Skip to main content

History of Geochemistry

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Geochemistry grew out of the Renaissance arts of alchemy and metallurgy . Over much of that long past, geochemistry was intimately intertwined with chemistry itself, evolving into a distinct subfield of both chemistry and earth sciences only with the dawn of the twentieth century. It now holds a central role in understanding the Earth, its neighboring planets, and their evolution.

Early Roots in Alchemy and Chemistry

The term “geochemistry” was coined in 1838 by the German-Swiss chemist Christian Friedrich Schönbein , a professor of chemistry and physics at the University of Basel and better known as the discoverer of ozone, who wrote, “In a word, a comparative geochemistry ought to be launched… before the mystery of the genesis of our planets and their inorganic matter may be revealed” (Krough 2001). Revealing the “mystery of the genesis of our planets and their inorganic matter” remains a remarkably accurate description of what geochemistry has become, with qualification...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albarède F, Goldstein SL, Dautel D (1997) The neodymium isotopic composition of manganese nodules from the southern and Indian oceans, the global oceanic neodymium budget, and their bearing on deep ocean circulation. Geochim Cosmochim Acta 61(6):1277–1291

    Article  Google Scholar 

  • Aldrich LT, Wetherill GW, Tilton GR, Davis GL (1956) Half-life of Rb87. Phys Rev 103(4):1045–1047

    Article  Google Scholar 

  • Allègre CJ, Luck JM (1980) Osmium isotopes as petrogenetic and geological tracers. Earth Planet Sci Lett 48(1):148–154

    Article  Google Scholar 

  • Aluwihare LI, Repeta DJ, Chen RF (1997) A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387(6629):166–169

    Article  Google Scholar 

  • Anbar AD et al (2007) A whiff of oxygen before the great oxidation Event? Science 317(5846):1903–1906

    Article  Google Scholar 

  • Armstrong RL (1971) Isotopic and chemical constraints on models of magma genesis in volcanic arcs. Earth Planet Sci Lett 12(1):137–142

    Article  Google Scholar 

  • Arrhenius S (1896) Ueber den Einfluss des Atmosphärischen Kohlensäurengehalts auf die Temperatur der Erdoberfläche. Proc R Swed Acad Sci 22(1):1–101

    Google Scholar 

  • Bailes K (1990) Science and Russian culture in the age of revolutions: V. I. Verndsky and his Scientific School, 1863–1945. Indiana University Press, Bloomington, 238 pp

    Google Scholar 

  • Barth TW (1952) Theoretical petrology. Wiley, New York

    Google Scholar 

  • Bentley AR (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13(3):135–187

    Article  Google Scholar 

  • Berner RA, Lasaga AC, Garrells RM (1983) The carbonate-silicate geochemical cycle and its efffect on atmopsheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261

    Article  Google Scholar 

  • Birck J-L, Allègre CJ (1985) Evidence for the presence of 53Mn in the early solar system. Geophys Res Lett 12(11):745–748

    Article  Google Scholar 

  • Bischof G (1847) Lehrbuch der chemischen und physikalischen Geologie, vol 1. A. Marcus, Bonn

    Google Scholar 

  • Bolin B et al (1983) Interactions of biogeochemical cycles. In: Bolin B, Cook RB (eds) Major biogeochemical cycles and their interactions. Wiley, New York, pp 1–40

    Google Scholar 

  • Boltwood BB (1907) Ultimate disintegration products of the radioactive elements; part II, disintegration products of uranium. Am J Sci 23(134):77–88. Series 4

    Google Scholar 

  • Bouvier A, Boyet M (2016) Primitive solar system materials and earth share a common initial 142Nd abundance. Nature 537(7620):399–402

    Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat Geosci 3(9):637–641

    Article  Google Scholar 

  • Bowen N (1922) The reaction principle in petrogenesis. J Geol 30(3):177–198

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton, 332 pp

    Google Scholar 

  • Boyle EA et al (eds) (2015) GEOTRACES GA-03 - the U.S. GEOTRACES North Atlantic transect, Deep Sea research part II: topical studies in oceanography, vol 116. Elsevier, Amsterdam, 342 pp

    Google Scholar 

  • Brantley SL, Lebedeva M (2011) Learning to read the chemistry of regolith to understand the critical zone. Annu Rev Earth Planet Sci 39(1):387–416

    Article  Google Scholar 

  • Briggs DEG, Summons RE (2014) Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36(5):482–490

    Article  Google Scholar 

  • Broecker W (2012) The carbon cycle and climate change: memoirs of my 60 years in science. Geochem Perspect 1(2):221–221

    Article  Google Scholar 

  • Brown H, Patterson C (1948) The composition of meteoritic matter: III. Phase equilibria, genetic relationships and planet structure. J Geol 56(2):85–111

    Article  Google Scholar 

  • Bruland KW, Middag R, Lohan MC (2014) 8.2 - controls of trace metals in seawater A2 - Holland, Heinrich D. In: Turekian KK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 19–51

    Chapter  Google Scholar 

  • Buddington AF, Lindlsey DH (1964) Iron-Titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29(4):547–650

    Article  Google Scholar 

  • Burges A (1960) The nature and distribution of humic acid. Sci Proc R Dublin Soc Ser A 1:770

    Google Scholar 

  • Cabral RA et al (2013) Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496(7446):490–493

    Article  Google Scholar 

  • Clarke FW (1869) Views around Ithaca; being a description of the waterfalls and ravines of this remarkable locality. Andrus, McChain & Co., Ithaca, 155 pp

    Google Scholar 

  • Clarke FW, (1873a) The constants of nature. Smithsonian institution, Washington, DC

    Google Scholar 

  • Clarke FW (1873b) Evolution and the spectroscope. Pop Sci Mon 2:320–326

    Google Scholar 

  • Clarke FW (1884) The elements of chemistry. D. Appleton & Company, New York, p 369

    Google Scholar 

  • Clarke FW (1908) The data of geochemistry. US Geol Surv Bull:770

    Google Scholar 

  • Clarke FW (1918) Notes on isotopic lead. Proc Natl Acad Sci 4(6):181–188

    Article  Google Scholar 

  • Clarke FW (1925) The evolution and disintegration of matter. US Geol Surv Prof Pap 132D:51–86

    Google Scholar 

  • Clarke FW, Washington HS (1922) The average chemical composition of igneous rocks. Proc Natl Acad Sci U S A 8(5):108

    Article  Google Scholar 

  • Clarke FW, Washington HS (1924) The composition of the earth’s crust. US Government Printing Office, Washington, DC

    Google Scholar 

  • Clarke FW, Wheeler WC (1922) The inorganic constituents of marine invertebrates. US Government Printing Office, Washington, DC

    Google Scholar 

  • Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primodal helium. Earth Planet Sci Lett 6(3):213–220

    Google Scholar 

  • Clayton RN (2002) Self-shielding in the solar nebula. Nature 415:860–861

    Article  Google Scholar 

  • Clayton RN, Grossman L, Mayeda TK (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182(4111):485–488

    Article  Google Scholar 

  • Cloud PE (1968) Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth’s volatile envelope. Science 160(3829):729–736

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1–2):524–541

    Article  Google Scholar 

  • Conway EJ (1942) The chemical evolution of the ocean. Proc R Ir Acad B. JSTOR 48:161–212

    Google Scholar 

  • Correns CW, Von Engelhardt W (1939) Neue Untersuchungen fiber die Verwitterung des Kalifeldspates. Chem Erde 12:1–22

    Google Scholar 

  • Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3(2):53–92

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Møller J, Langway CC (1969) One thousand centuries of climatic record from camp century on the Greenland ice sheet. Science 166(3903):377–380

    Article  Google Scholar 

  • Delavault H, Chauvel C, Thomassot E, Devey CW, Dazas B (2016) Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc Natl Acad Sci 113(46):12952–12956

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252

    Google Scholar 

  • Dittmar W (1884) Report on researches into the composition of ocean water collected by H. M. S. Challenger during the years 1873–1876. In: Murray J (ed) Challenger Report: Physics and Chemistry, vol 1. H.M. Stationery Office, Neill & Co., Edinburgh, pp 1–211

    Google Scholar 

  • Dodd MS et al (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643):60–64

    Article  Google Scholar 

  • Durand B (2003) Histoire de la géochimie organique. Oil Gas Sci Technol – Rev IFP 58(2):203–231

    Article  Google Scholar 

  • Ebelman JJ (1845) Sur les produits de la décomposition des espèces minèrales de la famille des silicates. Ann Rev Mines 12:627–654

    Google Scholar 

  • Edmond JM et al (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagous data. Earth Planet Sci Lett 46:1–18

    Google Scholar 

  • Eglinton TI, Eglinton G (2008) Molecular proxies for paleoclimatology. Earth Planet Sci Lett 275(1–2):1–16

    Article  Google Scholar 

  • Eiler JM (2013) The isotopic anatomies of molecules and minerals. Annu Rev Earth Planet Sci 41(1):411–441

    Article  Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578

    Article  Google Scholar 

  • Epstein S (1997) The role of stable isotopes in geochemistries of all kinds. Annu Rev Earth Planet Sci 25(1):1–21

    Article  Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam H, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Am Bull 62(4):417–426

    Article  Google Scholar 

  • Eskola P (1920) On mineral facies of rocks. Norsk Geol Tidskr 6:143–194

    Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of atmospheric oxygen. Earth Planet Sci Lett 213:1–13

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth's earliest sulfur cycle. Science 289(5480):756–758

    Article  Google Scholar 

  • Farrington OC (1901) The constituents of meteorites. II. J Geol 9(6):522–532

    Article  Google Scholar 

  • Forchhammer G (1862) On the constitution of sea-water, at different depths, and in different latitudes. J Frankl Inst 74(6):401–403

    Article  Google Scholar 

  • Fourier J-BJ (1827) Les températures du globe terrestre et des espaces planétaires. Mém Acad R Sci Inst Fr 7:569–604

    Google Scholar 

  • Galvez ME, Gaillardet J (2012) Historical constraints on the origins of the carbon cycle concept. Compt Rendus Geosci 344(11–12):549–567

    Article  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and Equilibria. Freeman Cooper, San Francisco, 450 pp

    Google Scholar 

  • Garrels, R.M., Mackenzie, F.T., 1971. Evolution of sedimentary rocks

    Google Scholar 

  • Garrels RM, Thompson ME (1962) A chemical model for sea water at 25 degrees C and one atmosphere total pressure. Am J Sci 260(1):57–66

    Article  Google Scholar 

  • Garrels RM, Dreyer RM, Howland AL (1949) Diffusion of ions through intergranular spaces in water-saturated rocks. Geol Soc Am Bull 60(12):1809–1828

    Article  Google Scholar 

  • Gast PW (1960) Limitations on the composition of the upper mantle. J Geophys Res 65:1287–1297

    Article  Google Scholar 

  • Gast PW, Tilton GR, Hedge C (1964) Isotopic composition of lead and strontium from Ascension and Gough Islands. Science 145(3637):1181–1185

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1030

    Article  Google Scholar 

  • Ghosh P et al (2006) 13C-18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70(6):1439–1456

    Article  Google Scholar 

  • Goldberg ED, Arrhenius GOS (1958) Chemistry of Pacific pelagic sediments. Geochim Cosmochim Acta 13(2):153–212

    Article  Google Scholar 

  • Goldschmidt VM (1922) Über die massenverteilung im erdinneren, vergleicht migt etruktur gewissen meteoriten. Naturwissenschaften 7:105–123

    Google Scholar 

  • Goldschmidt VM (1923) Geochemische Verteilungsgesetze der Elemente I, Skrifter utgivne af det Norske Videnskapsselskapet Akademii i Oslo I Matematisk-Naturvidenskapelig Klasse, vol 2. Skrifter Norske Videnskaps-Akademi, Oslo, pp 1–17.

    Google Scholar 

  • Goldschmidt VM (1937) Geochemische Verteilungsgesetze der Elemente XI Die Mengenverhältnisse der Elemente und der Atom-Arten. No. 4, 1–148. Skrifter utgivne af det Norske Videnskapsselskapet Akademii i Oslo I Matematisk-Naturvidenskapelig Klasse

    Google Scholar 

  • Goldschmidt VM (1941-1942) On super-uraner, grunstoffer med større kjerneladning enn 92. Fra Fysikkens Verden Oslo 3:179–180

    Google Scholar 

  • Hart SR (1971) Ocean floor basalts, Carnegie inst. Wash, Yearbook, pp 388–394

    Google Scholar 

  • Hawkesworth CJ et al (2010) The generation and evolution of the continental crust. J Geol Soc 167(2):229–248

    Article  Google Scholar 

  • Hedges JI (1992) Global biogeochemical cycles: progress and problems. Mar Chem 39(1):67–93

    Article  Google Scholar 

  • Hedges JI, Mann DC (1979) The lignin geochemistry of marine sediments from the southern Washington coast. Geochim Cosmochim Acta 43(11):1809–1818

    Article  Google Scholar 

  • Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations. Geochim Cosmochim Acta 32(8):853–877

    Article  Google Scholar 

  • Helgeson HC (1971) Kinetics of mass transfer among silicates and aqueous solutions. Geochim Cosmochim Acta 35(5):421–469

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  Google Scholar 

  • Holland HD (1962) Model of the evolution of the Earth’s atmosphere. In: Engle AEJ, James HL, Leonard BF (eds) Petrologic studies, a volume to honor A E Buddington. Geological Society of America, New York, pp 447–477

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Houtermans FG (1953) Determination of the age of the earth from the isotopic composition of meteoritic lead. Il Nuovo Cimento (1943–1954) 10(12):1623–1633

    Article  Google Scholar 

  • Howard E, Williams JL, de Bournon C (1802) Experiments and observations on certain stony and metalline substances, which at different times are said to have fallen on the earth; also on various kinds of native iron. Philos Trans R Soc Lond 92:168–212

    Article  Google Scholar 

  • Jasper JP, Hayes JM (1994) Reconstruction of paleoceanic PCO2 levels from carbon isotopic compositions of sedimentary biogenic components. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global change. Springer, Berlin, pp 323–341

    Google Scholar 

  • Johnson CM, McLennan SM, McSween HY, Summons RE (2013) Smaller, better, more: five decades of advances in geochemistry. Geol Soc Am Spec Pap 500:259–302

    Google Scholar 

  • Jouzel J et al (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796

    Article  Google Scholar 

  • Kawai N, Endo S (1970) The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev Sci Instrum 41(8):1178–1181

    Article  Google Scholar 

  • Kleber M, Johnson MG (2010) Chapter 3 – advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. In: Donald LS (ed) Advances in agronomy. Academic, pp 77–142. Amsterdam

    Google Scholar 

  • Krough H (2001) From geochemistry to cosmochemistry: the origin of a scientific discipline. In: Reinhardt C (ed) Chemical sciences in the 20th century: bridging boundaries. Wiley-VCH, Weinhiem, pp 160–192

    Chapter  Google Scholar 

  • Krumbein WC, Garrels RM (1952) Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials. J Geol 60(1):1–33

    Article  Google Scholar 

  • Lavoisier A (1772) Memoire sur l'esprit-de vin dans l'analyse des eaux minerales. Mem Acad R Sci 1772:555–563

    Google Scholar 

  • Lee T, Papanastassiou DA, Wasserbury GJ (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett 3:41–44

    Article  Google Scholar 

  • Libby WF (1934) Radioactivity of neodymium and samarium. Phys Rev 46(3):196–204

    Article  Google Scholar 

  • Libby WF, Anderson EC, Arnold JR (1949) Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109(2827):227–228

    Article  Google Scholar 

  • Lin Y, Cohen R, Floris A, Shulenburger L, Driver KP, (2016) Quantum Monte Carlo computations of the (Mg1-XFeX)SiO3 Perovskite to post-perovskite phase boundary. In APS Meeting Abstracts, Baltimore

    Google Scholar 

  • Liu L-G (1976) The post-spinel phase of forsterite. Nature 262(5571):770–772

    Article  Google Scholar 

  • Lord HC (1965) Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres. Icarus 4(3):279–288

    Article  Google Scholar 

  • Lovelock JE (1972) Gaia as seen through the atmosphere. Atmos Environ (1967) 6(8):579–580

    Article  Google Scholar 

  • Lugmair GW (1974) Sm-Nd ages: a new dating method. Meteoritics 9(4):369

    Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in earth/'s early ocean and atmosphere. Nature 506(7488):307–315

    Article  Google Scholar 

  • Mackenzie FT, Garrels RM (1966) Chemical mass balance between rivers and oceans. Am J Sci 264(7):507–525

    Article  Google Scholar 

  • Marvin UB, Wood JA, Dickey JS (1970) Ca-al rich phases in the allende meteorite. Earth Planet Sci Lett 7(4):346–350

    Article  Google Scholar 

  • Merrihue C, Turner G (1966) Potassium-argon dating by activation with fast neutrons. J Geophys Res 71(11):2852–2857

    Article  Google Scholar 

  • Merrill L, Bassett WA (1974) Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies. Rev Sci Instrum 45(2):290–294

    Article  Google Scholar 

  • Ming T, Anders E (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. II interstellar diamond and SiC: Carriers of exotic noble gases. Geochim Cosmochim Acta 52:1235–1244

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486(7401):101–104

    Article  Google Scholar 

  • Müller W, Fricke H, Halliday AN, McCulloch MT, Wartho J-A (2003) Origin and migration of the alpine iceman. Science 302(5646):862–866

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304(5672):855–858

    Article  Google Scholar 

  • Nier AO (1939) The isotopic constitution of radiogenic leads and the measurement of geological time II. Phys Rev 55(2):153–163

    Article  Google Scholar 

  • Pagani M, Arthur MA, Freeman KH (1999) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14(3):273–292

    Article  Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–126

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands1. Soil Sci Soc Am J 51(5):1173–1179

    Article  Google Scholar 

  • Patchett PJ, Tatsumoto M (1980) Lu-Hf total-rock isochron for the eucrite meteorites. Nature 288:571–574

    Article  Google Scholar 

  • Patterson C (1956) Age of meteorites and the earth. Geochim Cosmochim Acta 16:230–237

    Article  Google Scholar 

  • Patterson CC (1965) Contaminated and natural lead environments of man. Arch Environ Health: Int J 11(3):344–360

    Article  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 milllion years. Nature 406:695–699

    Article  Google Scholar 

  • Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26(2):155–179

    Article  Google Scholar 

  • Pütter A (1907) Der Stoffhaushalt des Meeres. Z Allg Physiol 7:321–368

    Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton, James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 176–192.

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea. Wiley, New York, pp 26–77

    Google Scholar 

  • Revelle R (1994) Harrison Brown 1917–1986. U.S. National Academy of Sciences, Washinngton, DC

    Google Scholar 

  • Reynolds JR (1960) Isotopic composition of xenon from enstatite chondrites. Z Naturforsch 15a:1112–1114

    Google Scholar 

  • Ringwood AE (1966) Mineralogy of the mantle. In: Hurley PM (ed) Advances in earth science. MIT Press, Cambridge, MA, pp 357–399

    Google Scholar 

  • Rosing M (1999) 13C-depleted carbon microparticles in >3700 Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  Google Scholar 

  • Roth J (1879) Allgemeine und chemische Geologie. Wilhem Hertz, Berlin

    Google Scholar 

  • Rubey WW (1951) Geologic history of sea water: an attempt to state the problem. Geol Soc Am Bull 62(9):1111–1148

    Article  Google Scholar 

  • Sarda P, Staudacher T, Allègre CJ (1988) Neon isotopes in submarine basalts. Earth Planet Sci Lett 91:73–88

    Article  Google Scholar 

  • Schilling J-G (1973) Iceland mantle plume: geochemical study of the Reykjanes ridge. Nature 242:565–571

    Article  Google Scholar 

  • Settle D, Patterson CC (1982) Magnitudes and sources of precipitation fluxes of industrial and natural leads to the North Pacific at Enewetak. J Geophys Res 87:8857–8869

    Article  Google Scholar 

  • Shackleton NJ, Pisias NG (1985) Atmospheric carbon dioxide, orbital forcing, and climate. In: Sunquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. AGU, Washington, pp 303–317

    Google Scholar 

  • Smith MR et al (1984) Petrogenesis of the SNC (shergottites, nakhlites, chassignites) meteorites: implications for their origin from a large dynamic planet, possibly Mars. J Geophys Res Solid Earth 89(S02):B612–B630

    Article  Google Scholar 

  • Staudacher T, Allègre CJ (1982) Terrestrial xenology. Earth Planet Sci Lett 60(3):389–406

    Article  Google Scholar 

  • Taylor HP, Epstein S (1963) O18/O16 ratios in rocks and coexisting minerals of the Skaergaard intrusion, East Greenland. J Petrol 4(1):51–74

    Google Scholar 

  • Tera F et al (1986) Sediment incorporation in island-arc magmas: inferences from 10Be. Geochim Cosmochim Acta 50:535–550

    Article  Google Scholar 

  • Thompson JB (1955) The thermodynamic basis for the mineral facies concept. Am J Sci 253(2):65–103

    Article  Google Scholar 

  • Tissot CL (1967) Influence de la température et de la pression sur la formation des hydrocarbures dans les argiles à kérogène. In 7th World Petroleum Congress, World Petroleum Congress, Mexico

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin, 699 pp

    Book  Google Scholar 

  • Trask PD, Wu C (1930) Does petroleum form in sediments at time of deposition? AAPG Bull 14(11):1451–1463

    Google Scholar 

  • Treibs A (1934) Chlorophyll- und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen und Asphalten. Ein Beitrag zur Entstehung des Erdöls. Justus Liebigs Ann Chem 510(1):42–62

    Article  Google Scholar 

  • Tschermak G (1883) Die mikroskopische Beschaffenheit der Meteoriten erläutert durch photographische Abbildungen. Sweitzerbart, Stuttgart

    Google Scholar 

  • Urey HC (1947) The thermodynamics of isotopic substances. J Chem Soc 1947:562–581

    Article  Google Scholar 

  • Urey HC (1951) The origin and development of the earth and other terrestrial planets. Geochim Cosmochim Acta 1(4–6):209–277

    Article  Google Scholar 

  • Urey HC (1952a) Chemical fractionation in the meteorites and the abundance of the elements. Geochim Cosmochim Acta 2(5):269–282

    Article  Google Scholar 

  • Urey HC (1952b) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci 38(4):351–363

    Article  Google Scholar 

  • Urey HC, Craig H (1953) The composition of the stone meteorites and the origin of the meteorites. Geochim Cosmochim Acta 4(1–2):36–82

    Article  Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the upper Cretaceous of England, Denmark, and the southeastern United States. Geol Soc Am Bull 62(4):399–416

    Article  Google Scholar 

  • Van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31(5):747–765

    Article  Google Scholar 

  • Vernadsky W (1924) La géochimie. Alcan, Paris

    Google Scholar 

  • Vernadsky V (1926) Biosfera. Scientific Chemico-Technical Publishing, Leningrad

    Google Scholar 

  • Vinogradov AP (1953) The elementary chemical composition of marine organisms. Yale University, Sears Foundation for Marine Research

    Google Scholar 

  • Waksman SA (1936) Humus: origin, chemical composition and importance in nature. Williams and Wilkins, Baltimore

    Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J Geophys Res Oceans 86(C10):9776–9782

    Article  Google Scholar 

  • Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim Cosmochim Acta 68(23):4779–4797

    Article  Google Scholar 

  • Wetherill GW (1957) Radioactivity of potassium and geologic time. Science 126(3273):545–549

    Article  Google Scholar 

  • Wildt R (1940) Cosmochemistry. Scientia 67:85–90

    Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330:246–248

    Article  Google Scholar 

  • Winkler HGF (1957) Experimentelle Gesteinsmetamorphose—I Hydrothermale metamorphose karbonatfreier tone. Geochim Cosmochim Acta 13(1):42–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

White, W.M. (2017). History of Geochemistry. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_295-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_295-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics