Skip to main content

Abstract

Fungi infect billions of people every year, yet their contribution to the global burden of disease is largely unrecognized and the repertoire of antifungal agents is rather limited. Thus, treatment of life-threatening invasive fungal infections is still based on drugs discovered several decades ago. In addition, recent data on resistance emergence of fungi emphasize the urgent need for novel antifungal treatments. One alternative strategy is based on host defense peptides. Among the large number of antimicrobial peptides, a group of peptides show primarily antifungal activity by interfering with enzymes of cell wall biosynthesis or specific membrane lipids such as ergosterol. Both are promising targets for antifungal peptides, as they are absent in mammalian cells and hence low toxicity of peptides can be expected. However, most of the antimicrobial peptides exhibit a broad spectrum activity including antifungal activity. These peptides act on the cell membrane level and although their structures vary largely, they share a positive net charge, which facilitates electrostatic interactions with negatively charged lipids of the target cell, and an amphipathic structure, which facilitates incorporation into the cell membrane and in turn membrane disruption. Thereby, membrane lipids differing between mammals and fungi play a central role concerning specificity and efficacy of these peptides. Hence, understanding their molecular mechanism(s) of action will aid in the design of novel antifungal agents. Finally, some of these peptides were shown to act synergistically with conventional drugs, which would further widen the armory to treat especially life-threatening invasive fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology (Reading, Engl) 150(Pt 7):2029–2035. doi:10.1099/mic.0.26980-0

    Google Scholar 

  • Almeida MS, Cabral KM, Zingali RB, Kurtenbach E (2000) Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Arch Biochem Biophys 378(2):278–286. doi:10.1006/abbi.2000.1824

    Article  CAS  PubMed  Google Scholar 

  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10(5):400–406. doi:10.1038/nchembio.1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arikan S, Lozano-Chiu M, Paetznick V, Rex JH (2002) In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium spp. Antimicrob Agents Chemother 46(1):245–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arouri A, Dathe M, Blume A (2009) Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Biochim Biophys Acta 1788(3):650–659. doi:10.1016/j.bbamem.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Chamberland H, Goulet A, Vierheilig H, Lafontaine J, Piché Y (1996) Effect of Nikkomycin Z, a chitin-synthase inhibitor, on hyphal growth and cell wall structure of two arbuscular-mycorrhizal fungi. Protoplasma 192(1–2):80–92. doi:10.1007/BF01273247

    Article  CAS  Google Scholar 

  • Balboa MA, Balsinde J, Dillon DA, Carman GM, Dennis EA (1999) Proinflammatory macrophage-activating properties of the novel phospholipid diacylglycerol pyrophosphate. J Biol Chem 274(1):522–526

    Article  CAS  PubMed  Google Scholar 

  • Barchiesi F, Spreghini E, Tomassetti S, Arzeni D, Giannini D, Scalise G (2005) Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata. Antimicrob Agents Chemother 49(12):4989–4992. doi:10.1128/AAC.49.12.4989-4992.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108. doi:10.1146/annurev.mi.22.100168.000511

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2015) The SMART model: soft membranes adapt and respond, also transiently, in the presence of antimicrobial peptides. J Pept Sci 21(5):346–355. doi:10.1002/psc.2729

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758(9):1529–1539. doi:10.1016/j.bbamem.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Blasko K, Schagina LV, Agner G, Kaulin YA, Takemoto JY (1998) Membrane sterol composition modulates the pore forming activity of syringomycin E in human red blood cells. Biochim Biophys Acta 1373(1):163–169

    Article  CAS  PubMed  Google Scholar 

  • Bobek LA, Situ H (2003) MUC7 20-Mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob Agents Chemother 47(2):643–652. doi:10.1128/AAC.47.2.643-652.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojsen R, Torbensen R, Larsen CE, Folkesson A, Regenberg B (2013) The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner. PLoS ONE 8(7):e69483. doi:10.1371/journal.pone.0069483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254(3):197–215

    Google Scholar 

  • Boucher HW, Groll AH, Chiou CC, Walsh TJ (2004) Newer systemic antifungal agents. Drugs 64(18):1997–2020. doi:10.2165/00003495-200464180-00001

    Article  CAS  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808. doi:10.1002/bies.20441

    Article  PubMed  Google Scholar 

  • Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, Douglas CM (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46(9):3001–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JC, Abruzzo GK, Flattery AM, Gill CJ, Hickey EJ, Hsu MJ, Kahn JN, Liberator PA, Misura AS, Pelak BA, Wang TC, Douglas CM (2006) Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob Agents Chemother 50(12):4202–4205. doi:10.1128/AAC.00485-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand A (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529. doi:10.1155/2012/517529

    Article  PubMed  PubMed Central  Google Scholar 

  • Brillinger GU (1979) Metabolic products of microorganisms. 181. Chitin synthase from fungi, a test model for substances with insecticidal properties. Arch Microbiol 121(1):71–74

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Science 336(6082):647. doi:10.1126/science.1222236

    Article  CAS  PubMed  Google Scholar 

  • Butts A, Krysan DJ (2012) Antifungal drug discovery: something old and something new. PLoS Pathog 8(9):e1002870. doi:10.1371/journal.ppat.1002870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cammue BP, de Bolle MF, Terras FR, Proost P, van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem 267(4):2228–2233

    CAS  PubMed  Google Scholar 

  • Cerbón J, Calderón V (1994) Surface potential regulation of phospholipid composition and in-out translocation in yeast. Eur J Biochem 219(1–2):195–200

    Article  PubMed  Google Scholar 

  • Chattopadhyay P, Banerjee SK, Sen K, Chakrabarti P (1985) Lipid profiles of Aspergillus niger and its unsaturated fatty acid auxotroph, UFA2. Can J Microbiol 31(4):352–355

    Article  CAS  PubMed  Google Scholar 

  • Chen SCA, Sorrell TC (2007) Antifungal agents. Med J Aust 187(7):404–409

    PubMed  Google Scholar 

  • Chen W, Zeng H, Tan H (2000) Cloning, sequencing, and function of sanF: a gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Curr Microbiol 41(5):312–316

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Megha London E (2009) Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation. J Biol Chem 284(10):6079–6092. doi:10.1074/jbc.M806077200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouabe C, Eyraud V, Da Silva P, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F (2011) New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286(42):36291–36296. doi:10.1074/jbc.M111.281055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole AM, Ganz T (2000) Human antimicrobial peptides: analysis and application. BioTech 29(4):822–826, 828, 830–831

    Google Scholar 

  • Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS (2002) Diversity of the penaeidin antimicrobial peptides in two shrimp species. Immunogenetics 54(6):442–445. doi:10.1007/s00251-002-0487-z

    Article  CAS  PubMed  Google Scholar 

  • Dähn U, Hagenmaier H, Höhne H, König WA, Wolf G, Zähner H (1976) Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen. Arch Microbiol 107(2):143–160

    Article  PubMed  Google Scholar 

  • Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822(1):1–42

    Article  CAS  PubMed  Google Scholar 

  • de Kruijff B (1997) Biomembranes. Lipids beyond the bilayer. Nature 386(6621):129–130. doi:10.1038/386129a0

    Article  PubMed  Google Scholar 

  • de Kruijff B, Demel RA (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochimica et Biophysica Acta (BBA) Biomembranes 339(1):57–70. doi:10.1016/0005-2736(74)90332-0

    Article  Google Scholar 

  • de Luca AJ, Walsh TJ (2000) Antifungal peptides: origin, activity, and therapeutic potential. Rev Iberoam Micol 17(4):116–120

    PubMed  Google Scholar 

  • de Lucca AJ, Jacks TJ, Takemoto J, Vinyard B, Peter J, Navarro E, Walsh TJ (1999) Fungal lethality, binding, and cytotoxicity of syringomycin-E. Antimicrob Agents Chemother 43(2):371–373

    PubMed  PubMed Central  Google Scholar 

  • de Medeiros LN, Angeli R, Sarzedas CG, Barreto-Bergter E, Valente AP, Kurtenbach E, Almeida FCL (2010) Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy. Biochim Biophys Acta 1798(2):105–113. doi:10.1016/j.bbamem.2009.07.013

    Article  PubMed  CAS  Google Scholar 

  • de Nobel H, van Den Ende H, Klis FM (2000) Cell wall maintenance in fungi. Trends Microbiol 8(8):344–345

    Article  PubMed  Google Scholar 

  • Denning DW (1997) Echinocandins and pneumocandins—a new antifungal class with a novel mode of action. J Antimicrob Chemother 40(5):611–614

    Article  CAS  PubMed  Google Scholar 

  • Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49(6):889–891

    Article  CAS  PubMed  Google Scholar 

  • De-Paula VS, Razzera G, Medeiros L, Miyamoto CA, Almeida MS, Kurtenbach E, Almeida FCL, Valente AP (2008) Evolutionary relationship between defensins in the Poaceae family strengthened by the characterization of new sugarcane defensins. Plant Mol Biol 68(4–5):321–335. doi:10.1007/s11103-008-9372-y

    Article  CAS  PubMed  Google Scholar 

  • Destoumieux D, Muñoz M, Cosseau C, Rodriguez J, Bulet P, Comps M, Bachère E (2000) Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 113(Pt 3):461–469

    CAS  PubMed  Google Scholar 

  • Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30(5):1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Devaux PF, Morris R (2004) Transmembrane asymmetry and lateral domains in biological membranes. Traffic 5(4):241–246. doi:10.1111/j.1600-0854.2004.0170.x

    Article  CAS  PubMed  Google Scholar 

  • Drgona L, Khachatryan A, Stephens J, Charbonneau C, Kantecki M, Haider S, Barnes R (2014) Clinical and economic burden of invasive fungal diseases in Europe: focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur J Clin Microbiol Infect Dis 33(1):7–21. doi:10.1007/s10096-013-1944-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788(1):289–294. doi:10.1016/j.bbamem.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 17(5):298–305. doi:10.1002/psc.1319

    Article  CAS  PubMed  Google Scholar 

  • Epand RF, Maloy WL, Ramamoorthy A, Epand RM (2010) Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry 49(19):4076–4084. doi:10.1021/bi100378m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA (1999) In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33(2):75–80

    Article  CAS  PubMed  Google Scholar 

  • Faruck MO, Yusof F, Chowdhury S (2015) An overview of antifungal peptides derived from insect. Peptides. doi:10.1016/j.peptides.2015.06.001

    PubMed  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269(52):33159–33163

    CAS  PubMed  Google Scholar 

  • Feigin AM, Schagina LV, Takemoto JY, Teeter JH, Brand JG (1997) The effect of sterols on the sensitivity of membranes to the channel-forming antifungal antibiotic, syringomycin E. Biochim Biophys Acta 1324(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Ling H, Du D, Zhang J, Niu G, Tan H (2014) Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes. Microb Cell Fact 13(1):59. doi:10.1186/1475-2859-13-59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fleet GH (1985) Composition and structure of yeast cell walls. Curr Top Med Mycol 1:24–56

    Article  CAS  PubMed  Google Scholar 

  • François Isabelle E J A, Bolle De, Miguel FC, Dwyer G, Goderis Inge J W M, Woutors PFJ, Verhaert PD, Proost P, Schaaper WMM, Cammue BPA, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128(4):1346–1358. doi:10.1104/pp.010794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franzot SP, Casadevall A (1997) Pneumocandin L-743,872 enhances the activities of amphotericin B and fluconazole against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother 41(2):331–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao B, Zhu S (2008) Differential potency of drosomycin to Neurospora crassa and its mutant: implications for evolutionary relationship between defensins from insects and plants. Insect Mol Biol 17(4):405–411. doi:10.1111/j.1365-2583.2008.00810.x

    Article  CAS  PubMed  Google Scholar 

  • Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC (2001) Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 40(37):10973–10978

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12(4):501–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghannoum MA, Janini G, Khamis L, Radwan SS (1986) Dimorphism-associated variations in the lipid composition of Candida albicans. J Gen Microbiol 132(8):2367–2375. doi:10.1099/00221287-132-8-2367

    CAS  PubMed  Google Scholar 

  • Ghannoum MA, Spellberg BJ, Ibrahim AS, Ritchie JA, Currie B, Spitzer ED, Edwards JE, Casadevall A (1994) Sterol composition of Cryptococcus neoformans in the presence and absence of fluconazole. Antimicrob Agents Chemother 38(9):2029–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves S, Abade J, Teixeira A, Santos NC (2012a) Lipid composition is a determinant for human defensin HNP1 selectivity. Biopolymers 98(4):313–321

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves S, Teixeira A, Abade J, de Medeiros LN, Kurtenbach E, Santos NC (2012b) Evaluation of the membrane lipid selectivity of the pea defensin Psd1. Biochim Biophys Acta 1818(5):1420–1426. doi:10.1016/j.bbamem.2012.02.012

    Article  PubMed  CAS  Google Scholar 

  • Goyal S, Khuller GK (1994) Structural and functional role of lipids in yeast and mycelial forms of Candida albicans. Lipids 29(11):793–797

    Article  CAS  PubMed  Google Scholar 

  • Gressent F, Da Silva P, Eyraud V, Karaki L, Royer C (2011) Pea Albumin 1 subunit b (PA1b), a promising bioinsecticide of plant origin. Toxins (Basel) 3(12):1502–1517. doi:10.3390/toxins3121502

    Article  CAS  Google Scholar 

  • Grover ND (2010) Echinocandins: a ray of hope in antifungal drug therapy. Indian J Pharmacol 42(1):9–11. doi:10.4103/0253-7613.62396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson LH, Perlman AM, Clemons KV, Stevens DA (1991) Synergy between cilofungin and amphotericin B in a murine model of candidiasis. Antimicrob Agents Chemother 35(7):1334–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatipoglu N, Hatipoglu H (2013) Combination antifungal therapy for invasive fungal infections in children and adults. Expert Rev Anti Infect Ther 11(5):523–535. doi:10.1586/eri.13.29

    Article  CAS  PubMed  Google Scholar 

  • Hechtberger P, Zinser E, Saf R, Hummel K, Paltauf F, Daum G (1994) Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast. Saccharomyces cerevisiae. Eur J Biochem 225(2):641–649

    Google Scholar 

  • Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6(1):1–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hector RF, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 34(4):587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, Amerongen AV, Abee T (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274(11):7286–7291

    Article  CAS  PubMed  Google Scholar 

  • Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH (2006) Universal behavior of membranes with sterols. Biophys J 90(5):1639–1649. doi:10.1529/biophysj.105.067652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitchcock CA, Dickinson K, Brown SB, Evans EG, Adams DJ (1990) Interaction of azole antifungal antibiotics with cytochrome P-450-dependent 14 alpha-sterol demethylase purified from Candida albicans. Biochem J 266(2):475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holz RW (1974) The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 235:469–479

    Article  CAS  PubMed  Google Scholar 

  • Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA, Chang C, Webster KM (2009) Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48(12):1695–1703. doi:10.1086/599039

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778(2):357–375. doi:10.1016/j.bbamem.2007.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsueh Y, Chen M, Patty PJ, Code C, Cheng J, Frisken BJ, Zuckermann M, Thewalt J (2007) Ergosterol in POPC membranes: physical properties and comparison with structurally similar sterols. Biophys J 92(5):1606–1615. doi:10.1529/biophysj.106.097345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352

    Article  CAS  PubMed  Google Scholar 

  • Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 1758(9):1292–1302. doi:10.1016/j.bbamem.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  • Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM, Stensen W (2011) A synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem 54(16):5786–5795. doi:10.1021/jm200450h

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Asahi K, Suzuki S (1969) Studies on polyoxins, antifungal antibiotics. 13. The structure of polyoxins. J Am Chem Soc 91(26):7490–7505

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Kaneko H (1977) The in vivo incorporation of [32P]-labeled orthophosphate into pyrophosphatidic acid and other phospholipids of Cryptococcus neoformans through cell growth. Lipids 12(10):809–813

    Article  CAS  PubMed  Google Scholar 

  • Jouvensal L, Quillien L, Ferrasson E, Rahbé Y, Guéguen J, Vovelle F (2003) PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling. Biochemistry 42(41):11915–11923. doi:10.1021/bi034803l

    Article  CAS  PubMed  Google Scholar 

  • Kapteyn JC, van Den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426(2):373–383

    Article  CAS  PubMed  Google Scholar 

  • Klis FM (1994) Review: cell wall assembly in yeast. Yeast 10(7):851–869. doi:10.1002/yea.320100702

    Article  CAS  PubMed  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26(3):239–256

    Article  CAS  PubMed  Google Scholar 

  • Koller D, Lohner K (2014) The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim Biophys Acta 1838(9):2250–2259. doi:10.1016/j.bbamem.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  • Kontoyiannis DP, Mantadakis E, Samonis G (2003) Systemic mycoses in the immunocompromised host: an update in antifungal therapy. J Hosp Infect 53(4):243–258. doi:10.1053/jhin.2002.1278

    Article  CAS  PubMed  Google Scholar 

  • Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274(27):18872–18879

    Article  CAS  PubMed  Google Scholar 

  • Koshlukova SE, Araujo MW, Baev D, Edgerton M (2000) Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 68(12):6848–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriván G, Sinkó J, Nagy IZ, Goda V, Reményi P, Bátai A, Lueff S, Kapás B, Réti M, Tremmel A, Masszi T (2006) Successful combined antifungal salvage therapy with liposomal amphothericin B and caspofungin for invasive Aspergillus flavus infection in a child following allogeneic bone marrow transplantation. Acta Biomed 77(Suppl 2):17–21

    PubMed  Google Scholar 

  • Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ (1999) Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother 43(11):2635–2641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacerda AF, Vasconcelos EAR, Pelegrini PB, de Sa Grossi, Maria F (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116. doi:10.3389/fmicb.2014.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamberty M, Caille A, Landon C, Tassin-Moindrot S, Hetru C, Bulet P, Vovelle F (2001) Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 40(40):11995–12003

    Article  CAS  PubMed  Google Scholar 

  • Latgé J, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117. doi:10.1016/j.mib.2014.05.009

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81(6):1829–1835. doi:10.1172/JCI113527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46(4):987–996. doi:10.1021/bi061441j

    Article  CAS  PubMed  Google Scholar 

  • Löffler J, Einsele H, Hebart H, Schumacher U, Hrastnik C, Daum G (2000) Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol Lett 185(1):59–63

    Article  PubMed  Google Scholar 

  • Lohner K (1996) Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids 81(2):167–184

    Article  CAS  PubMed  Google Scholar 

  • Lohner K (2001) The role of membrane lipid composition in cell targeting of antimicrobial peptides. In: Lohner K (ed) Development of novel antimicrobial agents: emerging strategies. Horizon Scientific Press, Wymondham, Norfolk, U.K., pp 149–165

    Google Scholar 

  • Lohner K (2009) New strategies for novel antibiotics: peptides targeting bacterial cell membranes. gpb 28(2):105–116. doi: 10.4149/gpb_2009_02_105

    Google Scholar 

  • Lohner K (2014) Antimicrobial mechanisms: a sponge against fungal infections. Nat Chem Biol 10(6):411–412. doi:10.1038/nchembio.1518

    Article  CAS  PubMed  Google Scholar 

  • Lohner K, Blondelle SE (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High Throughput Screen 8(3):241–256

    Article  CAS  PubMed  Google Scholar 

  • Loyse A, Thangaraj H, Easterbrook P, Ford N, Roy M, Chiller T, Govender N, Harrison TS, Bicanic T (2013) Cryptococcal meningitis: improving access to essential antifungal medicines in resource-poor countries. Lancet Infect Dis 13(7):629–637. doi:10.1016/S1473-3099(13)70078-1

    Article  PubMed  Google Scholar 

  • Marquardt D, Geier B, Pabst G (2015) Asymmetric lipid membranes: towards more realistic model systems. Membranes 5(2):180–196. doi:10.3390/membranes5020180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou S, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35(3):197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376(3):391–400

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34(19):6521–6526

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35(35):11361–11368. doi:10.1021/bi960016v

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286. doi:10.3389/fmicb.2012.00286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Prasad R (1990) An overview of lipids of Candida albicans. Prog Lipid Res 29(2):65–85

    Article  CAS  PubMed  Google Scholar 

  • Mizuhara N, Kuroda M, Ogita A, Tanaka T, Usuki Y, Fujita K (2011) Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg Med Chem 19(18):5300–5310. doi:10.1016/j.bmc.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Hani K, Nicolas P (1994) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269(50):31635–31641

    CAS  PubMed  Google Scholar 

  • Morton CO, Hayes A, Wilson M, Rash BM, Oliver SG, Coote P (2007) Global phenotype screening and transcript analysis outlines the inhibitory mode(s) of action of two amphibian-derived, alpha-helical, cationic peptides on Saccharomyces cerevisiae. Antimicrob Agents Chemother 51(11):3948–3959. doi:10.1128/AAC.01007-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol (Praha) 59(3):181–196. doi:10.1007/s12223-013-0280-4

    Article  CAS  Google Scholar 

  • Nicolay K, Laterveer FD, van Heerde WL (1994) Effects of amphipathic peptides, including presequences, on the functional integrity of rat liver mitochondrial membranes. J Bioenerg Biomembr 26(3):327–334

    Article  CAS  PubMed  Google Scholar 

  • Nix DE, Swezey RR, Hector R, Galgiani JN (2009) Pharmacokinetics of nikkomycin Z after single rising oral doses. Antimicrob Agents Chemother 53(6):2517–2521. doi:10.1128/AAC.01609-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordin SL, Sonesson A, Malmsten M, Mörgelin M, Egesten A (2012) The epithelium-produced growth factor midkine has fungicidal properties. J Antimicrob Chemother 67(8):1927–1936. doi:10.1093/jac/dks136

    Article  CAS  PubMed  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11(6):272–279. doi:10.1016/S0966-842X(03)00117-3

    Article  CAS  PubMed  Google Scholar 

  • Olson VL, Hansing RL, McClary DO (1977) The role of metabolic energy in the lethal action of basic proteins on Candida albicans. Can J Microbiol 23(2):166–174

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263(16):7472–7477

    CAS  PubMed  Google Scholar 

  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23(4):525–530. doi:10.1097/QAD.0b013e328322ffac

    Article  PubMed  Google Scholar 

  • Patton JL, Lester RL (1991) The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. J Bacteriol 173(10):3101–3108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 10(3):121–130. doi:10.1016/j.drup.2007.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS (2015) Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci. doi:10.1111/nyas.12831

    PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42(10):4419–4431. doi:10.1128/JCM.42.10.4419-4431.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Diekema DJ (2003) Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol 41(12):5729–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE (2015) Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 72(12):2261–2287. doi:10.1007/s00018-015-1860-z

    Article  CAS  PubMed  Google Scholar 

  • Porto WF, Souza VA, Nolasco DO, Franco OL (2012) In silico identification of novel hevein-like peptide precursors. Peptides 38(1):127–136. doi:10.1016/j.peptides.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Cahoon EB, Li J, Thokala M, Minto RE, Shah DM (2007) Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 66(3):771–786. doi:10.1111/j.1365-2958.2007.05955.x

    Article  CAS  PubMed  Google Scholar 

  • Reidl HH, Grover TA, Takemoto JY (1989) 31P-NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae. Biochim Biophys Acta 1010(3):325–329

    Article  CAS  PubMed  Google Scholar 

  • Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, Novak A, Lohner K, Zweytick D (2011a) In search of a novel target—phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta 1808(11):2638–2645. doi:10.1016/j.bbamem.2011.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl S, Zweytick D, Lohner K (2011b) Membrane-active host defense peptides—challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164(8):766–781. doi:10.1016/j.chemphyslip.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl S, Leber R, Rinner B, Schaider H, Lohner K, Zweytick D (2015) Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. Biochim Biophys Acta 1848(11 Pt A):2918–2931. doi: 10.1016/j.bbamem.2015.07.018

    Google Scholar 

  • Rogozhin EA, Slezina MP, Slavokhotova AA, Istomina EA, Korostyleva TV, Smirnov AN, Grishin EV, Egorov TA, Odintsova TI (2015) A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie 116:125–132. doi:10.1016/j.biochi.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  • Rosato A, Piarulli M, Schiavone BIP, Montagna MT, Caggiano G, Muraglia M, Carone A, Franchini C, Corbo F (2012) In vitro synergy testing of anidulafungin with fluconazole, tioconazole, 5-flucytosine and amphotericin B against some Candida spp. Med Chem 8(4):690–698

    Article  CAS  PubMed  Google Scholar 

  • Rydengård V, Shannon O, Lundqvist K, Kacprzyk L, Chalupka A, Olsson A, Mörgelin M, Jahnen-Dechent W, Malmsten M, Schmidtchen A (2008) Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog 4(8):e1000116. doi:10.1371/journal.ppat.1000116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl 39):2–7

    Article  PubMed  Google Scholar 

  • Sabatelli F, Patel R, Mann PA, Mendrick CA, Norris CC, Hare R, Loebenberg D, Black TA, McNicholas PM (2006) In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother 50(6):2009–2015. doi:10.1128/AAC.00163-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanati H, Belanger P, Fratti R, Ghannoum M (1997) A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob Agents Chemother 41(11):2492–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon JM, Templer RH (1995) Polymorphism of lipid-water systems. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics: structure and dynamics of membranes. Elsevier SPC, Amsterdam, pp 97–160

    Google Scholar 

  • Segre A, Bachmann RC, Ballio A, Bossa F, Grgurina I, Iacobellis NS, Marino G, Pucci P, Simmaco M, Takemoto JY (1989) The structure of syringomycins A1, E and G. FEBS Lett 255(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76(4):1436–1439. doi:10.1172/JCI112121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevcsik E, Pabst G, Jilek A, Lohner K (2007) How lipids influence the mode of action of membrane-active peptides. Biochim Biophys Acta 1768(10):2586–2595. doi:10.1016/j.bbamem.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66(4):236–248. doi:10.1002/bip.10260

    Article  CAS  PubMed  Google Scholar 

  • Shea JM, Henry JL, Del Poeta M (2006) Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Res 6(4):469–479. doi:10.1111/j.1567-1364.2006.00080.x

    Article  CAS  PubMed  Google Scholar 

  • Silva PM, Gonçalves S, Santos NC (2014) Defensins: antifungal lessons from eukaryotes. Front Microbiol 5:97. doi:10.3389/fmicb.2014.00097

    PubMed  PubMed Central  Google Scholar 

  • Smith HA, Shenbagamurthi P, Naider F, Kundu B, Becker JM (1986) Hydrophobic polyoxins are resistant to intracellular degradation in Candida albicans. Antimicrob Agents Chemother 29(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen KN, Kim KH, Takemoto JY (1996) In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae. Antimicrob Agents Chemother 40(12):2710–2713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013:204237. doi:10.1155/2013/204237

    PubMed  PubMed Central  Google Scholar 

  • Specht CA, Liu Y, Robbins PW, Bulawa CE, Iartchouk N, Winter KR, Riggle PJ, Rhodes JC, Dodge CL, Culp DW, Borgia PT (1996) The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 20(2):153–167. doi:10.1006/fgbi.1996.0030

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135(4):2055–2067. doi:10.1104/pp.104.040873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki YS, Wang Y, Takemoto JY (1992) Syringomycin-stimulated phosphorylation of the plasma membrane H-ATPase from red beet storage tissue. Plant Physiol 99(4):1314–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sydnor ERM, Perl TM (2011) Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 24(1):141–173. doi:10.1128/CMR.00027-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto JY, Yu Y, Stock SD, Miyakawa T (1993) Yeast genes involved in growth inhibition by Pseudomonas syringae pv. syringae syringomycin family lipodepsipeptides. FEMS Microbiol Lett 114(3):339–342

    Article  CAS  PubMed  Google Scholar 

  • Tanida T, Okamoto T, Ueta E, Yamamoto T, Osaki T (2006) Antimicrobial peptides enhance the candidacidal activity of antifungal drugs by promoting the efflux of ATP from Candida cells. J Antimicrob Chemother 57(1):94–103. doi:10.1093/jac/dki402

    Article  CAS  PubMed  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):983–989. doi:10.1098/rstb.2001.0888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terras FR, Torrekens S, van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316(3):233–240

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61(4):437–455. doi:10.1007/s00018-003-3231-4

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Cammue BP, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KK, van Even F, Parret AH, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci U S A 97(17):9531–9536. doi:10.1073/pnas.160077797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thevissen K, François IEJA, Takemoto JY, Ferket KKA, Meert EMK, Cammue BPA (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226(1):169–173

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Warnecke DC, François IEJA, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BPHJ, Ferket KKA, Cammue BPA (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279(6):3900–3905. doi:10.1074/jbc.M311165200

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Francois IEJA, Aerts AM, Cammue BPA (2005) Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 6(8):923–928

    Article  CAS  PubMed  Google Scholar 

  • Tokumura T, Horie T (1997) Kinetics of nikkomycin Z degradation in aqueous solution and in plasma. Biol Pharm Bull 20(5):577–580

    Article  CAS  PubMed  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55(1):4–30. doi:10.1002/1097-0282(2000)55:1<4:AID-BIP30>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Ueta E, Tanida T, Osaki T (2001) A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J Pept Res 57(3):240–249

    Article  CAS  PubMed  Google Scholar 

  • Urbina JA, Pekerar S, Le HB, Patterson J, Montez B, Oldfield E (1995) Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Biochim Biophys Acta 1238(2):163–176

    Article  PubMed  Google Scholar 

  • van den Bossche H, Willemsens G, Cools W, Lauwers WF, Le Jeune L (1978) Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact 21(1):59–78

    Article  PubMed  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70(19):3545–3570. doi:10.1007/s00018-013-1260-1

    Article  PubMed  CAS  Google Scholar 

  • van Meer G, de Kroon Anton I P M (2011) Lipid map of the mammalian cell. J Cell Sci 124(Pt 1):5–8. doi:10.1242/jcs.071233

    Article  PubMed  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. doi:10.1038/nrm2330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183(2):258–264. doi:10.1007/BF00197797

    Article  PubMed  Google Scholar 

  • van’t Hof W, Reijnders IM, Helmerhorst EJ, Walgreen-Weterings E, Simoons-Smit IM, Veerman EC, Amerongen AV (2000) Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity. Antonie Van Leeuwenhoek 78(2):163–169

    Google Scholar 

  • Vanden Bossche H, Marichal P, Willemsens G, Bellens D, Gorrens J, Roels I, Coene MC, Le Jeune L, Janssen PA (1990) Saperconazole: a selective inhibitor of the cytochrome P-450-dependent ergosterol synthesis in Candida albicans. Aspergillus fumigatus and Trichophyton mentagrophytes. Mycoses 33(7–8):335–352

    Google Scholar 

  • Viejo-Díaz M, Andrés MT, Fierro JF (2004) Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its candidacidal activity. FEMS Immunol Med Microbiol 42(2):181–185. doi:10.1016/j.femsim.2004.04.005

    Article  PubMed  CAS  Google Scholar 

  • Vriens K, Cammue BPA, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19(8):12280–12303. doi:10.3390/molecules190812280

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi H, Abe S, Okutomi T, Tansho S, Kawase K, Yamaguchi H (1996) Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol Immunol 40(11):821–825

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32(Database issue):D590–2. doi:10.1093/nar/gkh025

    Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37(Database issue):D933–7. doi:10.1093/nar/gkn823

    Google Scholar 

  • Warnock DW (2007) Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 48(1):1–12. doi:10.3314/jjmm.48.1

    Article  Google Scholar 

  • Wilmes M, Cammue BPA, Sahl H, Thevissen K (2011) Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28(8):1350–1358. doi:10.1039/c1np00022e

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(10):905–917. doi:10.1021/cb1001558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woyke T, Pettit GR, Winkelmann G, Pettit RK (2001) In vitro activities and postantifungal effects of the potent dolastatin 10 derivative auristatin PHE. Antimicrob Agents Chemother 45(12):3580–3584. doi:10.1128/AAC.45.12.3580-3584.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woyke T, Roberson RW, Pettit GR, Winkelmann G, Pettit RK (2002) Effect of Auristatin PHE on microtubule integrity and nuclear localization in Cryptococcus neoformans. Antimicrob Agents Chemother 46(12):3802–3808. doi:10.1128/AAC.46.12.3802-3808.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C (2005) The epidemiology and attributable outcomes of Candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis 41(9):1232–1239. doi:10.1086/496922

    Article  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84(15):5449–5453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Takemoto JY (1986) Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Interaction with the plasma membrane of wild-type and respiratory-deficient strains of Saccharomyces cerevisiae. Biochim Biophys Acta 861(1):201–204

    Article  CAS  PubMed  Google Scholar 

  • Zinser E, Paltauf F, Daum G (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol 175(10):2853–2858

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Nermina Malanovic for her generous support in compiling Fig. 2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Lohner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lohner, K., Leber, R. (2016). Antifungal Host Defense Peptides. In: Epand, R. (eds) Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Cham. https://doi.org/10.1007/978-3-319-32949-9_2

Download citation

Publish with us

Policies and ethics