Skip to main content

Predicting Atherosclerotic Plaque Location in an Iliac Bifurcation Using a Hybrid CFD/Biomechanical Approach

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Abstract

Experimental evidence indicates that haemodynamic stimuli influence some properties of the arterial endothelium, such as cell geometry and permeability, leading to possible accumulation of blood-borne macromolecules and initiation of atherosclerosis. Patient-specific computational models are able to capture complex haemodynamic characteristics to explore and analyse the development of these diseases in silico. Patient-specific models are particularly beneficial in the case of aortic dissection (AD), a condition in which the aortic wall is split in two, creating a true and a false lumen. In this condition, the proportion of blood through the main vessel and the main aortic branches is substantially modified and malperfusion (lack of blood supply) of the downstream vessels is often observed. Furthermore, AD alters the haemodynamics downstream of the lesion, potentially leading to the formation of atherosclerotic plaques at the iliac bifurcation. In order to correctly approximate the haemodynamic changes and analyse the role they play in the development of atherosclerosis formations in AD patients, a combined multiscale methodology is required. In this study, both, blood flow through an iliac bifurcation of a patient suffering from type-B aortic dissection and endothelium behavior are analysed, in order to investigate atherosclerosis formation. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erbel, R., Alfonso, F., Boileau, C., Dirsch, O., Eber, B., Haverich, A., Rakowski, H., Struyven, J., Radegran, K., Sechtem, U., Taylor, J., Zollikofer, C., Klein, W.W., Mulder, B., Providencia, L.A.: Task Force on Aortic Dissection, European Society of Cardiology: Diagnosis and management of aortic dissection. Eur. Heart J. 22(18), 1642–1681 (2001)

    Article  Google Scholar 

  2. Bastien, M., Dagenais, F., Dumont, É., Vadeboncoeur, N., Dion, B., Royer, M., Gaudet-Savard, T., Poirier, P.: Assessment of management of cardiovascular risk factors in patients with thoracic aortic disease. Blood Pressure Monitoring 17, 235–242 (2012)

    Article  Google Scholar 

  3. Itani, Y., Watanabe, S., Masuda, Y.: Aortic calcification detected in a mass chest screening program using a mobile helical computed tomography unit. Relationship to risk factors and coronary artery disease. Circ. J. 68, 538–541 (2004)

    Article  Google Scholar 

  4. Iribarren, C.: Patients with vascular calcifications are at increased risk of cardiovascular events: implications for risk factor management and further research. J. Intern. Med. 261, 235–237 (2007)

    Article  Google Scholar 

  5. Tsai, T.T., Trimarchi, S., Nienaber, C.A.: Acute aortic dissection: perspectives from the International Registry of Acute Aortic Dissection (IRAD). Eur. J. Vasc. Endovasc. Surg. 37, 149–159 (2009)

    Article  Google Scholar 

  6. Dietz, H.C., Cutting, G.R., Pyeritz, R.E., Maslen, C.L., Sakai, L.Y., Corson, G.M., Puffenberger, E.G., Hamosh, A., Nanthakumar, E.J., Curristin, S.M.: Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991)

    Article  Google Scholar 

  7. Pyeritz, R.E.: The Marfan Syndrome 51, 481–510 (2000)

    Google Scholar 

  8. Braverman, A.C.: Aortic dissection: Prompt diagnosis and emergency treatment are critical. Cleveland Clinic Journal of Medicine 78, 685–696 (2011)

    Article  Google Scholar 

  9. Coady, M.A., Rizzo, J.A., Elefteriades, J.A.: Pathologic variants of thoracic aortic dissections. Penetrating atherosclerotic ulcers and intramural hematomas. Cardiol. Clin. 17, 637–657 (1999)

    Article  Google Scholar 

  10. Tsai, T.T., Fattori, R., Trimarchi, S., Isselbacher, E., Myrmel, T., Evangelista, A., Hutchison, S., Sechtem, U., Cooper, J.V., Smith, D.E., Pape, L., Froehlich, J., Raghupathy, A., Januzzi, J.L., Eagle, K.A., Nienaber, C.A.: International Registry of Acute Aortic Dissection: Long-term survival in patients presenting with type B acute aortic dissection: insights from the International Registry of Acute Aortic Dissection. Circulation 114, 2226–2231 (2006)

    Article  Google Scholar 

  11. LePage, M.A., Quint, L.E., Sonnad, S.S.: Aortic dissection: CT features that distinguish true lumen from false lumen. Am. J. Roentgenology 177, 207–211 (2001)

    Article  Google Scholar 

  12. Willoteaux, S., Lions, C., Gaxotte, V., Negaiwi, Z., Beregi, J.P.: Imaging of aortic dissection by helical computed tomography (CT). European Radiology 14, 1999–2008 (2004)

    Article  Google Scholar 

  13. Robinson, J.G., Fox, K.M., Bullano, M.F., Grandy, S.: The SHIELD Study Group: Atherosclerosis profile and incidence of cardiovascular events: A population-based survey. BMC Cardiovasc. Disord. 9, 46 (2009)

    Article  Google Scholar 

  14. Svensson, L.G., Kouchoukos, N.T., Miller, D.C., Bavaria, J.E., Coselli, J.S., Curi, M.A., Eggebrecht, H., Elefteriades, J.A., Erbel, R., Gleason, T.G., Lytle, B.W., Mitchell, R.S., Nienaber, C.A., Roselli, E.E., Safi, H.J., Shemin, R.J., Sicard, G.A., Sundt III, T.M., Szeto, W.Y., III Wheatley, G.H.: Expert Consensus Document on the Treatment of Descending Thoracic Aortic Disease Using Endovascular Stent-Grafts. Ann. Thorac. Surg. 85, S1–S41 (2008)

    Google Scholar 

  15. O’Rourke, M.J., McCullough, J.P.: An investigation of the flow field within patient-specific models of an abdominal aortic aneurysm under steady inflow conditions. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 224, 971–988 (2010)

    Article  Google Scholar 

  16. Alishahi, M., Alishahi, M.M., Emdad, H.: Numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Scientia Iranica 18, 1297–1305 (2011)

    Article  Google Scholar 

  17. Kim, H.J., Figueroa, C.A., Hughes, T.J.R., Jansen, K.E., Taylor, C.A.: Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comp. Meth. Appl. Mech. Eng. 198, 3551–3566 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Olgac, U., Kurtcuoglu, V., Poulikakos, D.: Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. American Journal of Physiology-Heart and Circulatory Physiology 294, H909–H919 (2008)

    Google Scholar 

  19. Di Tomaso, G., Díaz-Zuccarini, V., Pichardo-Almarza, C.: A multiscale model of atherosclerotic plaque formation at its early stage. IEEE Trans. Biomed. Eng. 58, 3460–3463 (2011)

    Article  Google Scholar 

  20. Diaz-Zuccarini, V., Di Tomaso, G., Agu, O., Pichardo-Almarza, C.: Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach. Healthcare Technology Letters, pp. 1–6 (2014)

    Google Scholar 

  21. Brown, A.G., Shi, Y., Marzo, A., Staicu, C., Valverde, I., Beerbaum, P., Lawford, P.V., Hose, D.R.: Accuracy vs. computational time: translating aortic simulations to the clinic. J. Biomech. 45, 516–523 (2012)

    Article  Google Scholar 

  22. Alimohammadi, M., Agu, O., Balabani, S., Díaz-Zuccarini, V.: Development of a patient-specific simulation tool to analyse aortic dissections: Assessment of mixed patient-specific flow and pressure boundary conditions. Med. Eng. Phys. 36, 275–284 (2014)

    Article  Google Scholar 

  23. Shi, Y., Lawford, P., Hose, R.: Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. BioMed. Eng. OnLine 10, 33 (2011)

    Article  Google Scholar 

  24. Gijsen, F., Van de Vosse, F.N., Janssen, J.D.: The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. J. Biomech. 32, 601–608 (1999)

    Article  Google Scholar 

  25. Levesque, M.J., Liepsch, D., Moravec, S., Nerem, R.M.: Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6, 220–229 (1986)

    Article  Google Scholar 

  26. Tedgui, A., Lever, M.J.: Filtration through damaged and undamaged rabbit thoracic aorta. Am. J. Phys. 247, H784–H791 (1984)

    Google Scholar 

  27. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley and Sons (2007)

    Google Scholar 

  28. Sun, N., Wood, N.B., Hughes, A.D., Thom, S.A.M., Xu, X.Y.: Influence of pulsatile flow on LDL transport in the arterial wall. Ann. Biomed. Eng. 35, 1782–1790 (2007)

    Article  Google Scholar 

  29. Gao, F., Guo, Z., Sakamoto, M., Matsuzawa, T.: Fluid-structure Interaction within a Layered Aortic Arch Model. J. Biol. Phys. 32, 435–454 (2006)

    Article  Google Scholar 

  30. Gerdes, A., Joubert-Hübner, E., Esders, K., Sievers, H.H.: Hydrodynamics of aortic arch vessels during perfusion through the right subclavian artery. Ann. Thorac. Surg. 69, 1425–1430 (2000)

    Article  Google Scholar 

  31. Ku, D.N., Giddens, D.P., Zarins, C.K., Glagov, S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5, 293–302 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alimohamadi, M., Pichardo-Almarza, C., Di Tomaso, G., Balabani, S., Agu, O., Diaz-Zuccarini, V. (2015). Predicting Atherosclerotic Plaque Location in an Iliac Bifurcation Using a Hybrid CFD/Biomechanical Approach. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_57

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics