Skip to main content

Part of the book series: Headache ((HEAD))

Abstract

Over the last two decades, neuroimaging studies have led to a reappraisal of central mechanisms involved in migraine pathophysiology. Neuroimaging studies clearly support the view of migraine being a primary brain disorder with altered sensory processing even in pain-free periods. In the future, neuroimaging has the potential to provide a noninvasive biomarker that will potentially facilitate headache diagnosis and aid physicians in treatment decisions and treatment monitoring. However, findings from current studies are still partially inconsistent. In this chapter, the findings of neuroimaging studies in migraine are summarized according to brain anatomy separately for (peri)ictal and interictal phase where applicable. Figure 6.1 and Table 6.1 summarize brain areas where activation has been reported during attacks, respectively, which have been suggested to play a role outside of attacks. Findings in medication-overuse headache are briefly outlined at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiller C et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7):658–660

    Article  CAS  PubMed  Google Scholar 

  2. Borsook D, Burstein R (2012) The enigma of the dorsolateral pons as a migraine generator. Cephalalgia 32(11):803–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bahra A et al (2001) Brainstem activation specific to migraine headache. Lancet 357(9261):1016–1017

    Article  CAS  PubMed  Google Scholar 

  4. Matharu MS et al (2004) Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain 127(Pt 1):220–230

    Article  PubMed  Google Scholar 

  5. Afridi SK et al (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62(8):1270–1275

    Article  PubMed  Google Scholar 

  6. Cao Y et al (2002) Functional MRI-BOLD of brainstem structures during visually triggered migraine. Neurology 59(1):72–78

    Article  CAS  PubMed  Google Scholar 

  7. Denuelle M et al (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47(10):1418–1426

    PubMed  Google Scholar 

  8. Afridi SK et al (2005) A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128(Pt 4):932–939

    Article  CAS  PubMed  Google Scholar 

  9. Lance JW et al (1983) Brainstem influences on the cephalic circulation: experimental data from cat and monkey of relevance to the mechanism of migraine. Headache 23(6):258–265

    Article  CAS  PubMed  Google Scholar 

  10. Goadsby PJ, Duckworth JW (1989) Low frequency stimulation of the locus coeruleus reduces regional cerebral blood flow in the spinalized cat. Brain Res 476(1):71–77

    Article  CAS  PubMed  Google Scholar 

  11. Seghatoleslam M et al (2014) Cortical spreading depression modulates the caudate nucleus activity. Neuroscience 267:83–90

    Article  CAS  PubMed  Google Scholar 

  12. Denuelle M et al (2008) Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia 28(8):856–862

    Article  CAS  PubMed  Google Scholar 

  13. Haas DC, Kent PF, Friedman DI (1993) Headache caused by a single lesion of multiple sclerosis in the periaqueductal gray area. Headache 33(8):452–455

    Article  CAS  PubMed  Google Scholar 

  14. Goadsby PJ (2002) Neurovascular headache and a midbrain vascular malformation: evidence for a role of the brainstem in chronic migraine. Cephalalgia 22(2):107–111

    Article  CAS  PubMed  Google Scholar 

  15. Rubin MN, Garza I (2012) A discrete lesion of the midpontine tegmentum causing migrainous headache and numbness. Headache 52(9):1428–1429

    Article  PubMed  Google Scholar 

  16. Mariotti P et al (2012) Chronic migraine-like headache caused by a demyelinating lesion in the brain stem. Pain Med 13(4):610–612

    Article  PubMed  Google Scholar 

  17. Gee JR et al (2005) The association of brainstem lesions with migraine-like headache: an imaging study of multiple sclerosis. Headache 45(6):670–677

    Article  PubMed  Google Scholar 

  18. Demarquay G et al (2011) Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia 31(1):84–94

    Article  CAS  PubMed  Google Scholar 

  19. Sakai Y et al (2008) Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology 70(6):431–439

    Article  CAS  PubMed  Google Scholar 

  20. Sakai Y et al (2014) alpha-[11C] methyl-L tryptophan-PET as a surrogate for interictal cerebral serotonin synthesis in migraine without aura. Cephalalgia 34(3):165–173

    Article  CAS  PubMed  Google Scholar 

  21. Moulton EA et al (2008) Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One 3(11):e3799

    Article  PubMed Central  PubMed  Google Scholar 

  22. Stankewitz A et al (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31(6):1937–1943

    Article  CAS  PubMed  Google Scholar 

  23. Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  CAS  PubMed  Google Scholar 

  24. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70(5):838–845

    Article  PubMed Central  PubMed  Google Scholar 

  25. Schwedt TJ et al (2014) Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 15(1):154–165

    Article  PubMed Central  PubMed  Google Scholar 

  26. Schwedt TJ et al (2013) Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 53(5):737–751

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schuh-Hofer S et al (2007) Increased serotonin transporter availability in the brainstem of migraineurs. J Neurol 254(6):789–796

    Article  CAS  PubMed  Google Scholar 

  28. Rocca MA et al (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770

    Article  PubMed  Google Scholar 

  29. Welch KM et al (2001) Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache 41(7):629–637

    Article  CAS  PubMed  Google Scholar 

  30. Riederer F et al (2013) Decrease of gray matter volume in the midbrain is associated with treatment response in medication-overuse headache: possible influence of orbitofrontal cortex. J Neurosci 33(39):15343–15349

    Article  CAS  PubMed  Google Scholar 

  31. Geraud G, Donnet A (2013) Migraine and hypothalamus. Rev Neurol (Paris) 169(5):372–379

    Article  CAS  Google Scholar 

  32. Maniyar FH et al (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137(Pt 1):232–241

    Article  PubMed  Google Scholar 

  33. Moulton EA et al (2014) Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS One 9(4):e95508

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kagan R et al (2013) Hypothalamic and basal ganglia projections to the posterior thalamus: possible role in modulation of migraine headache and photophobia. Neuroscience 248:359–368

    Article  CAS  PubMed  Google Scholar 

  35. Burstein R et al (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68(1):81–91

    Article  PubMed Central  PubMed  Google Scholar 

  36. Stankewitz A, Schulz E, May A (2013) Neuronal correlates of impaired habituation in response to repeated trigemino-nociceptive but not to olfactory input in migraineurs: an fMRI study. Cephalalgia 33(4):256–265

    Article  CAS  PubMed  Google Scholar 

  37. Maleki N et al (2012) Direct optic nerve pulvinar connections defined by diffusion MR tractography in humans: implications for photophobia. Hum Brain Mapp 33(1):75–88

    Article  PubMed Central  PubMed  Google Scholar 

  38. Drummond PD, Woodhouse A (1993) Painful stimulation of the forehead increases photophobia in migraine sufferers. Cephalalgia 13(5):321–324

    Article  CAS  PubMed  Google Scholar 

  39. Moulton EA et al (2011) Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine States. Cereb Cortex 21(2):435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Granziera C et al (2014) Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp 35(4):1461–1468

    Article  PubMed  Google Scholar 

  41. Borsook D et al (2010) A key role of the basal ganglia in pain and analgesia–insights gained through human functional imaging. Mol Pain 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kruit MC et al (2009) Iron accumulation in deep brain nuclei in migraine: a population-based magnetic resonance imaging study. Cephalalgia 29(3):351–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tepper SJ et al (2012) Iron deposition in pain-regulatory nuclei in episodic migraine and chronic daily headache by MRI. Headache 52(2):236–243

    Article  PubMed  Google Scholar 

  44. Maleki N et al (2011) Migraine attacks the basal ganglia. Mol Pain 7:71

    Article  PubMed Central  PubMed  Google Scholar 

  45. Yuan K et al (2013) Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. J Pain 14(8):836–844

    Article  PubMed  Google Scholar 

  46. Aurora SK et al (2007) Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache 47(7):996–1003; discussion 1004–1007

    Article  PubMed  Google Scholar 

  47. Zhao L et al (2014) Abnormal brain activity changes in patients with migraine: a short-term longitudinal study. J Clin Neurol 10(3):229–235

    Article  PubMed Central  PubMed  Google Scholar 

  48. Simons LE et al (2014) The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp 35(2):527–538

    Article  PubMed Central  PubMed  Google Scholar 

  49. Dehbandi S et al (2008) Cortical spreading depression modulates synaptic transmission of the rat lateral amygdala. Eur J Neurosci 27(8):2057–2065

    Article  PubMed  Google Scholar 

  50. Valfre W et al (2008) Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 48(1):109–117

    Article  PubMed  Google Scholar 

  51. Hadjikhani N et al (2013) The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia 33(15):1264–1268

    Article  PubMed Central  PubMed  Google Scholar 

  52. Leao AA (1951) The slow voltage variation of cortical spreading depression of activity. Electroencephalogr Clin Neurophysiol 3(3):315–321

    Article  CAS  PubMed  Google Scholar 

  53. Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 9(4):344–352

    Article  CAS  PubMed  Google Scholar 

  54. Lauritzen M, Olesen J (1984) Regional cerebral blood flow during migraine attacks by Xenon-133 inhalation and emission tomography. Brain 107(Pt 2):447–461

    Article  PubMed  Google Scholar 

  55. Hadjikhani N et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98(8):4687–4692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Denuelle M et al (2011) A PET study of photophobia during spontaneous migraine attacks. Neurology 76(3):213–218

    Article  CAS  PubMed  Google Scholar 

  57. Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92(8):1069–1075

    Article  CAS  PubMed  Google Scholar 

  58. Kirbas S et al (2013) Evaluation of the retinal changes in patients with chronic migraine. Acta Neurol Belg 113(2):167–172

    Article  PubMed  Google Scholar 

  59. Ekinci M et al (2014) Retinal nerve fibre layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmol 14:75

    Article  PubMed Central  PubMed  Google Scholar 

  60. Boulloche N et al (2010) Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry 81(9):978–984

    Article  PubMed  Google Scholar 

  61. Maniyar FH et al (2014) Photic hypersensitivity in the premonitory phase of migraine–a positron emission tomography study. Eur J Neurol 21(9):1178–1183

    Article  CAS  PubMed  Google Scholar 

  62. Datta R et al (2013) Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia 33(6):365–374

    Article  PubMed Central  PubMed  Google Scholar 

  63. Vincent M et al (2003) Enhanced interictal responsiveness of the migraineous visual cortex to incongruent bar stimulation: a functional MRI visual activation study. Cephalalgia 23(9):860–868

    Article  CAS  PubMed  Google Scholar 

  64. Antal A et al (2011) Differential activation of the middle-temporal complex to visual stimulation in migraineurs. Cephalalgia 31(3):338–345

    Article  PubMed  Google Scholar 

  65. Griebe M et al (2014) Multimodal assessment of optokinetic visual stimulation response in migraine with aura. Headache 54(1):131–141

    Article  PubMed  Google Scholar 

  66. Hougaard A et al (2014) Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura. Hum Brain Mapp 35(6):2714–2723

    Article  PubMed  Google Scholar 

  67. Hougaard A et al (2015) Structural gray matter abnormalities in migraine relate to headache lateralization, but not aura. Cephalalgia 35(1):3–9

    Article  PubMed  Google Scholar 

  68. Granziera C et al (2006) Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med 3(10):e402

    Article  PubMed Central  PubMed  Google Scholar 

  69. Messina R et al (2013) Cortical abnormalities in patients with migraine: a surface-based analysis. Radiology 268(1):170–180

    Article  PubMed  Google Scholar 

  70. Rocca MA et al (2008) Selective diffusion changes of the visual pathways in patients with migraine: a 3-T tractography study. Cephalalgia 28(10):1061–1068

    Article  CAS  PubMed  Google Scholar 

  71. Noseda R et al (2010) A neural mechanism for exacerbation of headache by light. Nat Neurosci 13(2):239–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Okamoto K et al (2010) Bright light activates a trigeminal nociceptive pathway. Pain 149(2):235–242

    Article  PubMed Central  PubMed  Google Scholar 

  73. Sarchielli P et al (2005) Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 24(4):1025–1031

    Article  PubMed  Google Scholar 

  74. Gonzalez de la Aleja J et al (2013) Higher glutamate to glutamine ratios in occipital regions in women with migraine during the interictal state. Headache 53(2):365–375

    Article  PubMed  Google Scholar 

  75. Sandor PS et al (2005) MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25(7):507–518

    Article  CAS  PubMed  Google Scholar 

  76. Sappey-Marinier D et al (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12(4):584–592

    Article  CAS  PubMed  Google Scholar 

  77. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666

    Article  CAS  PubMed  Google Scholar 

  78. Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130(Pt 7):1718–1731

    Article  PubMed  Google Scholar 

  79. Demarquay G et al (2008) Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia 28(10):1069–1080

    Article  CAS  PubMed  Google Scholar 

  80. Chong CD et al (2014) Atypical age-related cortical thinning in episodic migraine. Cephalalgia 34(14):1115–1124

    Article  PubMed  Google Scholar 

  81. Russo A et al (2012) Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J Neurol 259(9):1903–1912

    Article  PubMed  Google Scholar 

  82. Aderjan D, Stankewitz A, May A (2010) Neuronal mechanisms during repetitive trigemino-nociceptive stimulation in migraine patients. Pain 151(1):97–103

    Article  PubMed  Google Scholar 

  83. Judit A, Sandor PS, Schoenen J (2000) Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia 20(8):714–719

    Article  CAS  PubMed  Google Scholar 

  84. Obermann M et al (2014) Central vestibular system modulation in vestibular migraine. Cephalalgia 34(13):1053–1061

    Article  PubMed  Google Scholar 

  85. Schmitz N et al (2008) Attack frequency and disease duration as indicators for brain damage in migraine. Headache 48(7):1044–1055

    Article  PubMed  Google Scholar 

  86. Kim JH et al (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28(6):598–604

    Article  CAS  PubMed  Google Scholar 

  87. Jin C et al (2013) Structural and functional abnormalities in migraine patients without aura. NMR Biomed 26(1):58–64

    Article  PubMed  Google Scholar 

  88. Fumal A et al (2006) Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain 129(Pt 2):543–550

    PubMed  Google Scholar 

  89. Biagianti B et al (2012) Orbitofrontal dysfunction and medication overuse in patients with migraine. Headache 52(10):1511–1519

    Article  PubMed  Google Scholar 

  90. Riederer F et al (2012) Grey matter changes associated with medication-overuse headache: correlations with disease related disability and anxiety. World J Biol Psychiatry 13(7):517–525

    Article  PubMed  Google Scholar 

  91. Ferraro S et al (2012) In medication-overuse headache, fMRI shows long-lasting dysfunction in midbrain areas. Headache 52(10):1520–1534

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Sprenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andelova, M., Borsook, D., Sprenger, T. (2015). Imaging of Migraine. In: Ashina, M., Geppetti, P. (eds) Pathophysiology of Headaches. Headache. Springer, Cham. https://doi.org/10.1007/978-3-319-15621-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15621-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15620-0

  • Online ISBN: 978-3-319-15621-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics