Skip to main content

Robot Grasping Foundations

  • Chapter
  • First Online:
From Robot to Human Grasping Simulation

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 19))

Abstract

This chapter presents the foundations of this book, introducing the basic concepts and definitions involved in the study of object grasping and manipulation tackled in the following chapters. It starts with the definition of a grasp and the most common contact models. Then an introduction to grasp analysis and grasp synthesis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, R.N., Li, Z., Sastry, S.: A mathematical introduction to robotics manipulation. CRC Press, USA (1994)

    Google Scholar 

  2. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on. pp. 348–353. IEEE (2000)

    Google Scholar 

  3. Prattichizzo, D., Trinkle, J.: Springer Handbook of Robotics, pp. 671–700. Springer, Berlin (2008)

    Book  Google Scholar 

  4. Roa Garzón, M.: Grasp planning methodology for 3D arbitrary shaped objects. Ph. d. thesis, Universidad Politécnica de Cataluña (2009)

    Google Scholar 

  5. Mason, M.T.: Mechanics of robotic manipulation. The MIT Press, Cambridge (2001)

    Google Scholar 

  6. Kao, I., Lynch, K., Burdick, J.: Contact modeling and manipulation, pp. 647–668. Springer, Berlin (Sep 2008). Springer Handbook of Robotics

    Google Scholar 

  7. Roa, M., Suarez, R.: Computation of independent contact regions for grasping 3-d objects. IEEE Trans. Robot. 25(4), 839–850 (Aug 2009)

    Google Scholar 

  8. Salisbury, J.: Kinematics and force analysis of articulated hands. Ph.d. thesis, Standford University (1982)

    Google Scholar 

  9. Mason, M.T., Salisbury, J.K.: Robot hands and the mechanics of manipulation. The MIT Press, Cambridge (1985). The MIT series in Artificial Intelligence

    Google Scholar 

  10. Cutkosky, M.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (Jun 1989)

    Article  Google Scholar 

  11. Lin, Q., Burdick, J.M., Rimon, E.: A stiffness-based quality measure for compliant grasps and fixture. IEEE Trans. Robot. Autom. 16(6), 675–688 (2000)

    Article  Google Scholar 

  12. Bicchi, A.: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation. Int. J. Robot. Auton. Syst. 13, 127–147 (1994)

    Article  Google Scholar 

  13. Harada, K., Kaneko, M., Tsuji, T.: Rolling based manipulation for multiple objects. In: Proceedings. ICRA ’00. IEEE International Conference on Robotics and Automation. vol. 4, pp. 3887–3894 (2000).

    Google Scholar 

  14. Olsson, H., Astrom, K., de Wit, C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    Article  MATH  Google Scholar 

  15. Canudas de Wit, C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (Mar 1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdmann, M.: On a representation of friction in configuration space. Int. J. Robot. Res. 13(3), 2179–2184 (1994)

    Article  MathSciNet  Google Scholar 

  17. Lynch, K.: Toppling manipulation. In: Proceedings. 1999 IEEE International conference on robotics and automation, 1999, vol. 4, pp. 2551–2557 (1999)

    Google Scholar 

  18. Tao Zhang, M., Goldberg, K., Smith, G., Beretty, R.P., Overmars, M.: Pin design for part feeding. Robotica 19(06), 695–702 (Sep 2001)

    Article  Google Scholar 

  19. Maeda, Y., Arai, T.: Planning of graspless manipulation by a multifingered robot hand. Adv. Robot. 19(5), 501–521 (2005)

    Article  Google Scholar 

  20. Ciocarlie, M., Miller, A., Allen, P.: Grasp analysis using deformable fingers. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, In (2005). (IROS 2005). pp. 4122–4128 (Aug 2005)

    Google Scholar 

  21. Ciocarlie, M., Lackner, C., Allen, P.: Soft finger model with adaptive contact geometry for grasping and manipulation tasks. In: EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Second joint, pp. 219–224 (Mar 2007)

    Google Scholar 

  22. Howe, R., Kao, I., Cutkosky, M.: The sliding of robot fingers under combined torsion and shear loading. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 103–105 vol. 1 (Apr 1988)

    Google Scholar 

  23. Kao, I., Cutkosky, M.R.: Quasistatic manipulation with compliance and sliding. Int. J. Robot. Res. 11(1), 20–40 (Feb 1992)

    Article  Google Scholar 

  24. Howe, R.D., Cutkosky, M.R.: Practical force-motion models for sliding manipulation. I. J. Robot. Res. 15(6), 557–572 (1996), http://dblp.unitrier.de/db/journals/ijrr/ijrr15.html#HoweC96

    Google Scholar 

  25. Kao, I., Yang, F.: Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Trans. Robot. Autom. 20(1), 132–135 (Feb 2004)

    Google Scholar 

  26. Pérez-González, A., Fenollosa-Esteve, C., Sancho-Bru, J.L., Sánchez-MaríÂnn, F.T., Vergara, M., RodríÂnguez-Cervantes, P.J.: A modified elastic foundation contact model for application in 3d models of the prosthetic knee. Med. Eng. Phy. 30(3), 387–398 (2008), http://www.sciencedirect.com/science/article/pii/S1350453307000616

    Google Scholar 

  27. Hertz, H.: On the contact of rigid elastic solids and on hardness. Ch 6: Assorted Papers (1882)

    Google Scholar 

  28. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  29. Xydas, N., Kao, I.: Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results. Int. J. Robot. Res. 18(9), 941–950 (1999)

    Article  Google Scholar 

  30. Xydas, N., Bhagavat, M., Kao, I.: Study of soft-finger contact mechanics using finite elements analysis and experiments. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065) (April), pp. 2179–2184 (2000)

    Google Scholar 

  31. Gonthier, Y.: Contact dynamics modelling for robotic task simulation. Ph.D. thesis, University of Waterloo (Oct 2007)

    Google Scholar 

  32. Shimoga, K.B.: Robot grasp synthesis algorithms: A survey. I. J. Robot. Res. 15(3), 230–266 (1996), http://dblp.uni-trier.de/db/journals/ijrr/ijrr15.html \({\#}\)Shimoga96

  33. Bicchi, A.: On the closure properties of robotic grasping. Int. J. Robot. Res. 14, 319–334 (1995)

    Article  Google Scholar 

  34. Nguyen, V.D.: Constructing force-closure grasps. Institute of Electrical and Electronics Engineers (1988)

    Google Scholar 

  35. Salisbury, J.K., Roth, B.: Kinematic and force analysis of articulated mechanical hands. J. Mech. Trans. Autom. Des. 105(1), 35–41 (1983), http://link.aip.org/link/?JMT/105/35/1

    Google Scholar 

  36. Mishra, B., Schwartz, J.T., Sharir, M.: On the existence and synthesis of multifinger positive grips. Algorithmica 2(1–4), 541–558 (Nov 1987)

    MathSciNet  MATH  Google Scholar 

  37. Hirai, S., Asada, H.: Kinematics and statics of manipulation using the theory of polyhedral convex cones. Int. J. Robot. Res. 12(5), 434–447 (October 1993)

    Article  Google Scholar 

  38. Xiong, Y.L.: Theory of point contact restraint and qualitative analysis of robot grasping. Sci. China (Scientia Sinica) Series A 37(5), 629–640 (1994), http://www.scopus.com/inward/record.url?eid=2-s2.0-0001723889&partnerID=40&md5=39ad9b3ac9ce43daa95fced360cb6d18

  39. Ferrari, C., Canny, J.: Planning optimal grasps. In: Proceedings 1992 IEEE International Conference on Robotics and Automation, pp. 2290–2295 (1992)

    Google Scholar 

  40. Zhu, X., Wang, J.: Synthesis of force-closure grasps on 3-d objects based on the q distance. IEEE Trans. Robot. 19(4), 669–679 (2003), http://dblp.uni-trier.de/db/journals/trob/trob19.html \({\#}\)ZhuW03

    Google Scholar 

  41. Nakamura, Y., Nagai, K., Yoshikawa, T.: Dynamics and stability in coordination of multiple robotic mechanisms. Int. J. Robot. Res. 8(2), 44–61 (1989), http://ijr.sagepub.com/content/8/2/44.abstract

    Google Scholar 

  42. Trinkle, J.: On the stability and instantaneous velocity of grasped frictionless objects. IEEE Trans. Robot. Autom. 8(5), 560–572 (Oct 1992), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=163781&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3Don+the+stability+and+instantaneous+velocity+of+grasped

  43. Liu, Y.H.: Qualitative test and force optimization of 3-d frictional form-closure grasps using linear programming. IEEE Trans. Robot. Autom. 15(1), 163–173 (Feb 1999), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=744611&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DQualitative+test+and+force+optimization+of+3-D+frictional+formclosure+grasps+using+linear+programming

  44. Han, L., Trinkle, J.C., Li, Z.X.: Grasp analysis as linear matrix inequality problems. IEEE Trans. Robot. 16(6), 663–674 (2000), http://dblp.uni-trier.de/db/journals/trob/trob16.html \({\#}\)HanTL00

    Google Scholar 

  45. Zhu, X., Ding, H., Wang, M.: A numerical test for the closure properties of 3-d grasps. IEEE Trans. Robot. Autom. 20(3), 543–549 (June 2004)

    Article  Google Scholar 

  46. Zheng, Y., Chew, C.M.: Distance between a point and a convex cone in —dimensional space: computation and applications. IEEE Trans. Robot. 25(6), 1397–1412 (Dec 2009)

    Google Scholar 

  47. Zheng, Y., Lin, M., Manocha, D.: On computing reliable optimal grasping forces. IEEE Trans. Robot. 28(3), 619–633 (June 2012)

    Article  Google Scholar 

  48. Buss, M., Hashimoto, H., Moore, J.: Dextrous hand grasping force optimization. IEEE Trans. Robot. Autom. 12(3), 406–418 (June 1996), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=499823&contentType=Journals+%26+Magazines&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number%3A10865)

  49. Buss, M., Faybusovich, L., Moore, J.B.: Dikin-type algorithms for dextrous grasping force optimization. Int. J. Robot. Res. 17(8), 831–839 (1998), http://ijr.sagepub.com/content/17/8/831.abstract

    Google Scholar 

  50. Helmke, U., Huper, K., Moore, J.: Quadratically convergent algorithms for optimal dextrous hand grasping. IEEE Trans. Robot. Autom. 18(2), 138–146 (Apr 2002)

    Article  Google Scholar 

  51. Liu, G., Li, Z.: Real-time grasping-force optimization for multifingered manipulation: theory and experiments. IEEE/ASME Trans. Mechatron. 9(1), 65–77 (Mar 2004)

    Article  Google Scholar 

  52. Gazeau, J.P., Zeghloul, S., Ramirez, G.: Manipulation with a polyarticulated mechanical hand: a new efficient real-time method for computing fingertip forces for a global manipulation strategy. Robotica 23, 479–490 (6 2005), http://dx.doi.org/10.1017/S0263574704001067

  53. Cornellà, J., Suárez, R., Carloni, R., Melchiorri, C.: Dual programming based approach for optimal grasping force distribution. Mechatronics 18(7), 348–356 (2008), http://www.sciencedirect.com/science/article/pii/S0957415807001080

    Google Scholar 

  54. Zheng, Y., Qian, W.H.: Limiting and minimizing the contact forces in multifingered grasping. Mech. Mach. Theory 41(10), 1243–1257 (2006), http://www.sciencedirect.com/science/article/pii/S0094114X05001953

  55. Morales, A., Sanz, P., Del Poblil, A., Fagg, A.: Vision-based three-finger grasp synthesis constrained by hand geometry. Robot. Auton. Sys. 54(6), 496–512 (2006)

    Article  Google Scholar 

  56. Ponce, J., Faverjon, B.: On computing three-finger force-closure grasps of polygonal objects. IEEE Trans. Robot. Autom. 11(6), 868–881 (Dec 1995)

    Article  Google Scholar 

  57. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J.D., Merlet, J.P.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. Int. J. Robot. Res. 16(1), 11–35 (1997)

    Article  Google Scholar 

  58. Liu, Y.H.: Computing n-finger form-closure grasps on polygonal objects. Int. J. Robot. Res. 19(2), 149–158 (2000), http://ijr.sagepub.com/content/19/2/149.abstract

    Google Scholar 

  59. Napier, J.: The prehensile movements of the human hand. Surger 38(4), 902–913 (1956)

    Google Scholar 

  60. Stansfield, S.: Robotic grasping of unknown objects: a knowledge-based approach. Int. J. Robot. Res. 10(4), 314–326 (1991)

    Article  Google Scholar 

  61. Wren, D., Fisher, R.: Dextrous hand grasping strategies using preshapes and digit trajectories. In: IEEE International Conference on Systems, Man and, Cybernetics. vol. 1, pp. 910–915 vol. 1 (Oct 1995)

    Google Scholar 

  62. Miller, A.T., Knoop, S., Christensen, H., Allen, P.K.: Automatic grasp planning using shape primitives. In: Proceedings ICRA’03. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1824–1829. IEEE (2003)

    Google Scholar 

  63. Miller, A., Allen, P.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (Dec 2004)

    Article  Google Scholar 

  64. Diankov, R.: Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University, Robotics Institute (Aug 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz León .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

León, B., Morales, A., Sancho-Bru, J. (2014). Robot Grasping Foundations. In: From Robot to Human Grasping Simulation. Cognitive Systems Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-01833-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01833-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01832-4

  • Online ISBN: 978-3-319-01833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics