Skip to main content

Smart and Sustainable Food Production Technologies

  • Chapter
  • First Online:
Sustainable Food Systems (Volume II)

Part of the book series: World Sustainability Series ((WSUSE))

  • 165 Accesses

Abstract

This chapter explores the intersection of smart technologies and sustainability in the context of food production. It highlights the urgent need for innovative approaches to address the challenges of feeding a growing global population while minimizing environmental impact. The chapter provides an overview of various smart and sustainable food production technologies, including precision agriculture, vertical farming, aquaponics, and blockchain-based traceability systems. It also discusses their potential benefits, challenges, and implications for achieving a more sustainable and resilient food system. Overall, this book chapter provides insights into the transformative potential of smart and sustainable food production technologies, offering a roadmap for building resilient and efficient food systems that can meet the growing global demand while preserving our natural resources and ensuring food security for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akella GK, Wibowo S, Grandhi S, Mubarak S (2023) A systematic review of blockchain technology adoption barriers and Enablers for smart and sustainable agriculture. Big Data Cogn Comput 7(2):86

    Article  Google Scholar 

  • Benke K, Tomkins B (2017) Future food-production systems: vertical farming and controlled-environment agriculture. Sustain Sci Pract Policy 13(1):13–26

    Google Scholar 

  • Bong CP, Lim LY, Lee CT et al (2018) The role of smart waste management in smart agriculture. Chem Eng Trans 70:937–942

    Google Scholar 

  • Bongiovanni R, Lowenberg-DeBoer J (2004). Precision agriculture and sustainability. Precis Agric 5:359–387

    Google Scholar 

  • Brahmanand PS, Singh AK (2022) Precision Irrigation Water Management-Current Status, Scope and Challenges. Indian J Fertil 18(4):372–380

    Google Scholar 

  • Chhaya L, Sharma P, Kumar A, Bhagwatikar G (2018) IoT-based implementation of field area network using smart grid communication infrastructure. SC 1(1):176–189

    Google Scholar 

  • De Schutter O (2014) The power of procurement: public purchasing in the service of realizing the right to food. United Nations Special Rapporteur on the Right to Food. Briefing Note, 8

    Google Scholar 

  • Ehler LE (2006) Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag Sci 62(9):787–789

    Article  CAS  PubMed  Google Scholar 

  • El Bilali H, Bottalico F, Ottomano Palmisano G et al (2020) Information and communication technologies for smart and sustainable agriculture. In: 30th scientific-experts conference of agriculture and food industry: answers for forthcoming challenges in modern agriculture. Springer International Publishing, pp 321–334

    Google Scholar 

  • Fereres E, Connor DJ (2004) Sustainable water management in agriculture. Challenges of the new water policies for the XXI century. AA Balkema, Lisse, The Netherlands, pp 157–170

    Google Scholar 

  • Garnett T (2013) Food sustainability: problems, perspectives and solutions. Proc Nutr Soc 72(01):29–39

    Article  PubMed  Google Scholar 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Sci 327(5967):828-831

    Google Scholar 

  • Gibbs HK, Rausch L, Munger J et al (2015) Brazil’s soy moratorium. Sci 347(6220):377-378

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science. AAAS

    Google Scholar 

  • Goel RK, Yadav CS, Vishnoi S et al (2021) Smart agriculture–Urgent need of the day in developing countries. Sustain Comput Infor 30:100512

    Google Scholar 

  • Goh HG, Hamilton A, Gan ML et al (2021). Smart agriculture with intelligent transportation system for sustainable future cities. ICCOINS, pp 24–29

    Google Scholar 

  • GoÅ‚asa P, WysokiÅ„ski M, BieÅ„kowska-GoÅ‚asa W et al (2021) Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 14(13):3784

    Article  Google Scholar 

  • Greenfeld A, Becker N, Bornman JF et al (2022) Is aquaponics good for the environment? evaluation of environmental impact through life cycle assessment studies on aquaponics systems. Aquacult Int 30:305–322

    Article  Google Scholar 

  • Greenfeld A, Becker N, McIlwain J et al (2019) Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Rev Aquac 11(3):848–862

    Article  Google Scholar 

  • Hobbs PR (2007) Conservation agriculture: what is it and why is it important for future sustainable food production? J Agric Sci 145(2):127

    Article  Google Scholar 

  • Ingram SJ (2012) Climate change and food systems Annual review of environment and resources 37:195–222

    Google Scholar 

  • Kalantari F, Tahir OM, Joni RA et al (2018) Opportunities and challenges in sustainability of vertical farming: A review. J Landsc Ecol 11(1):35–60

    Article  Google Scholar 

  • Kharola S, Ram M, Mangla SK et al (2022) Exploring the green waste management problem in food supply chains: a circular economy context. J Clean Prod 351:131355

    Article  Google Scholar 

  • Kumar A, Dubey SK, Sendhil R et al (2022) Smart and sustainable food production technologies. In: Smart and sustainable food technologies. Springer Nature Singapore, Singapore, pp 3–24

    Google Scholar 

  • Lal R (2015) Managing carbon for restoring degraded soils. Sustain 7(58755895):31

    Google Scholar 

  • Liaghat S, Balasundram SK (2010) A review: The role of remote sensing in precision agriculture. Am j Agric Biol Sci 5(1):50–55

    Article  Google Scholar 

  • Molden D (2013) Water for food, water for life: A comprehensive assessment of water management in agriculture

    Google Scholar 

  • Nichols M (2014) Vertical farming and urban agriculture. Pract Hydroponics Greenh 149:14–17

    Google Scholar 

  • Otten J, RD SD, Benson C et al (2016). Food waste prevention and recovery assessment report

    Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B: Biol Sci 365(1554):3065–3081

    Article  Google Scholar 

  • Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 7(2):229–252

    Article  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B: Biol Sci 363(1491):447–465

    Article  Google Scholar 

  • Priyambodo, Sidik M, Herlanda KD et al (2022). Integrated smart building for sustainable agriculture as a solution to food security and future land constraints. In: AIP Conference Proceedings (vol. 2563, no. 1). AIP Publishing LLC, p 080005

    Google Scholar 

  • Sheoran HS, Kakar R, Kumar N (2019) Impact of organic and conventional farming practices on soil quality: a global review. Appl Ecol Environ Res 17(1)

    Google Scholar 

  • Smith P, Bustamante M, Ahammad H et al (2014) Agriculture, forestry and other land use (AFOLU). In: Climate Change 2014: Mitigation of climate change. contribution of working group III to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Srinivasan K, Yadav VK (2023) An empirical investigation of barriers to the adoption of smart technologies integrated urban agriculture systems. J Decis Syst:1–35

    Google Scholar 

  • Swift MJ, Izac AM, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes: Are we asking the right questions? Agric Ecosyst Environ 104(1):113–134

    Article  Google Scholar 

  • Taha MF, ElMasry G, Gouda M et al (2022) Recent Advances of smart systems and internet of things (IoT) for aquaponics automation: a comprehensive overview. Chemosensors 10(8):303

    Article  CAS  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151(1):53–59

    Article  Google Scholar 

  • Van JCF, Tham PE, Lim HR et al (2022) Integration of Internet-of-Things as sustainable smart farming technology for the rearing of black soldier fly to mitigate food waste. J Taiwan Inst Chem Eng 137:104235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Twinkle Kumar Sachchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Sachchan, T.K., Sabharwal, P.K., Singh, R. (2024). Smart and Sustainable Food Production Technologies. In: Thakur, M. (eds) Sustainable Food Systems (Volume II). World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-46046-3_1

Download citation

Publish with us

Policies and ethics