Skip to main content

Multiscale Modeling Examples: New Polyelectrolyte Nanocomposite Membranes for Perspective Fuel Cells and Flow Batteries

  • Chapter
  • First Online:
Theory and Modeling of Polymer Nanocomposites

Abstract

Renewable energy production from fuel cells and energy storage in flow batteries are becoming increasingly important in the modern energy transition. Both batteries use polyelectrolyte membranes (PEMs) to allow proton transport. In this chapter, both PEMs and PEMs-based nanocomposites have been discussed using various simulational approaches. A coarse-grained model of a Nafion film capped by the substrates with variable wettability has been used to simulate nanocomposites of PEMs by classical molecular-dynamics (MD) method. Classical MD modeling results have also been reviewed for a PEM-graphene oxide nanocomposite internal structure and dynamics. Ab-initio simulations have been implemented to describe the proton transfer pathways in anhydrous PEMs. Finally, the large-scale mesoscopic simulations have been introduced to shed light on the water domain features present in the hydrated PEMs. A brief description of polybenzimidazole membrane as electrolyte and Ionic Liquids as dopants for fuel cells is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells—fundamentals and applications. Fuel Cells 1, 5–39 (2001). https://doi.org/10.1002/1615-6854(200105)1:1%3c5::AID-FUCE5%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  2. Wikipedia. Wikipedia (n.d.) https://en.wikipedia.org/wiki/Fuel_cell. Accessed 24 Sept 2019

  3. Z. Qi, G.M. Koenig, Review article: flow battery systems with solid electroactive materials. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process Meas. Phenom. 35, 040801 (2017). https://doi.org/10.1116/1.4983210

    Article  CAS  Google Scholar 

  4. P. Antonucci A. Aricò P. Cretı̀ E. Ramunni V. Antonucci, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125, 431–437 (1999). https://doi.org/10.1016/S0167-2738(99)00206-4

  5. D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell. J. Power Sources 106, 173–177 (2002). https://doi.org/10.1016/S0378-7753(01)01053-9

    Article  CAS  Google Scholar 

  6. B. Smitha, S. Sridhar, A. Khan, Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Memb. Sci. 225, 63–76 (2003). https://doi.org/10.1016/S0376-7388(03)00343-0

    Article  CAS  Google Scholar 

  7. H. Wang, G.A. Capuano, Behavior of raipore radiation-grafted polymer membranes in H2∕O2 fuel cells. J. Electrochem. Soc. 145, 780 (1998). https://doi.org/10.1149/1.1838345

    Article  CAS  Google Scholar 

  8. R. Nolte, K. Ledjeff, M. Bauer, R. Mülhaupt, Partially sulfonated poly(arylene ether sulfone)—a versatile proton conducting membrane material for modern energy conversion technologies. J. Memb. Sci. 83, 211–220 (1993). https://doi.org/10.1016/0376-7388(93)85268-2

    Article  CAS  Google Scholar 

  9. G. Gebel, P. Aldebert, M. Pineri, Swelling study of perfluorosulphonated ionomer membranes. Polymer (Guildf) 34, 333–339 (1993). https://doi.org/10.1016/0032-3861(93)90086-P

    Article  CAS  Google Scholar 

  10. J. Kerres, W. Cui, S. Reichle, New sulfonated engineering polymers via the metalation route. I. Sulfonated poly(ethersulfone) PSU Udel® via metalation-sulfination-oxidation. J. Polym. Sci. Part A Polym. Chem. 34, 2421–2438 (1996). https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2421::AID-POLA17>3.0.CO;2-A

  11. X. Jin, M.T. Bishop, T.S. Ellis, F.E. Karasz, A sulphonated poly(aryl ether ketone). Br. Polym. J. 17, 4–10 (1985). https://doi.org/10.1002/pi.4980170102

    Article  CAS  Google Scholar 

  12. P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Memb. Sci. 229, 95–106 (2004). https://doi.org/10.1016/J.MEMSCI.2003.09.019

    Article  CAS  Google Scholar 

  13. H.-L. Wu, C.-C.M. Ma, C.-H. Li, C.-Y. Chen, Swelling behavior and solubility parameter of sulfonated poly(ether ether ketone). J. Polym. Sci. Part B Polym. Phys. 44, 3128–3134 (2006). https://doi.org/10.1002/polb.20964

  14. R.T.S. Muthu Lakshmi, V. Choudhary, I.K. Varma, Sulphonated poly(ether ether ketone): synthesis and characterisation. J. Mater. Sci. 40, 629–636 (2005). https://doi.org/10.1007/s10853-005-6300-2

    Article  CAS  Google Scholar 

  15. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). https://doi.org/10.1016/0009-2614(95)00905-J

    Article  CAS  Google Scholar 

  16. O. Markovitch, N. Agmon, Structure and energetics of the hydronium hydration shells. J. Phys. Chem. A 111, 2253–2256 (2007). https://doi.org/10.1021/jp068960g

    Article  CAS  Google Scholar 

  17. M. Eigen, L. de Maeyer, Self-dissociation and protonic charge transport in water and. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 247, 505–533 (1958). https://doi.org/10.1098/rspa.1958.0208

    Article  CAS  Google Scholar 

  18. G. Zundel, J. Fritsch, The Chemical Physics of Solvation. vol. 2 (Elsevier, 1986). https://doi.org/10.1016/0166-1280(87)85076-5

  19. M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103, 150–161 (1995). https://doi.org/10.1063/1.469654

    Article  CAS  Google Scholar 

  20. M.E. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio simulations of water and water ions. J. Phys. Condens. Matter 6, A93-100 (1994). https://doi.org/10.1088/0953-8984/6/23A/010

    Article  CAS  Google Scholar 

  21. P.V. Komarov, P.G. Khalatur, A.R. Khokhlov, Large-scale atomistic and quantum-mechanical simulations of a nafion membrane: morphology, proton solvation and charge transport. Beilstein J. Nanotechnol. 4, 567–587 (2013). https://doi.org/10.3762/bjnano.4.65

    Article  CAS  Google Scholar 

  22. M.K. Petersen, G.A. Voth, Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion. J. Phys. Chem. B 110, 18594–18600 (2006). https://doi.org/10.1021/jp062719k

    Article  CAS  Google Scholar 

  23. M.K. Petersen, F. Wang, N.P. Blake H. Metiu, G.A. Voth, Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane Nafion (2005) https://doi.org/10.1021/JP044535G

  24. R. Devanathan, A. Venkatnathan, R. Rousseau, M. Dupuis, T. Frigato, W. Gu et al., Atomistic simulation of water percolation and proton hopping in nation fuel cell membrane. J. Phys. Chem. B 114, 13681–13690 (2010). https://doi.org/10.1021/jp103398b

    Article  CAS  Google Scholar 

  25. W.Y. Hsu, J.R. Barkley, P. Meakin, Ion percolation and insulator-to-conductor transition in Nafion perfluorosulfonic acid membranes. Macromolecules 13, 198–200 (1980). https://doi.org/10.1021/ma60073a041

    Article  CAS  Google Scholar 

  26. G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer (Guildf) 41, 5829–5838 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3

    Article  CAS  Google Scholar 

  27. K.A. Mauritz, R.B. Moore, State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004). https://doi.org/10.1021/cr0207123

    Article  CAS  Google Scholar 

  28. T.D. Gierke, G.E. Munn, F.C. Wilson, The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J. Polym. Sci. Polym. Phys. Ed. 19, 1687–1704 (1981). https://doi.org/10.1002/pol.1981.180191103

    Article  CAS  Google Scholar 

  29. C.L. Marx, D.F. Caulfield, S.L. Cooper, Morphology of ionomers. Macromolecules 6, 344–353 (1973). https://doi.org/10.1021/ma60033a007

    Article  CAS  Google Scholar 

  30. W.J. Macknight, W.P. Taggart, R.S. Stein, A model for the structure of ionomers. J. Polym. Sci. Polym. Symp. 45, 113–128 (2007). https://doi.org/10.1002/polc.5070450110

    Article  Google Scholar 

  31. W.Y. Hsu, T.D. Gierke, Ion transport and clustering in nafion perfluorinated membranes. J. Memb. Sci. 13, 307–326 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X

    Article  CAS  Google Scholar 

  32. M. Fujimura, T. Hashimoto, H. Kawai, Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 14, 1309–1315 (1981). https://doi.org/10.1021/ma50006a032

  33. M. Fujimura, T. Hashimoto, H. Kawai, Small-angle X-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 15, 136–144 (1982). https://doi.org/10.1021/ma00229a028

  34. B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, M. Thomas, Distribution of the «micelles» in hydrated perfluorinated ionomer membranes from SANS experiments. J. Phys. 51, 1341–1354 (1990). https://doi.org/10.1051/jphys:0199000510120134100

    Article  CAS  Google Scholar 

  35. M.H. Litt, Reevaluation of Nafion morphology. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 38, 80–81 (1997)

    CAS  Google Scholar 

  36. L. Rubatat, A.L. Rollet, G. Gebel, O. Diat, Evidence of elongated polymeric aggregates in Nafion. Macromolecules 35, 4050–4055 (2002). https://doi.org/10.1021/ma011578b

    Article  CAS  Google Scholar 

  37. K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater. 7, 75–83 (2008). https://doi.org/10.1038/nmat2074

    Article  CAS  Google Scholar 

  38. J.P. Meyers, J.E. Mcgrath, R. Borup, J. Meyers, B. Pivovar, Y.S. Kim et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007). https://doi.org/10.1021/cr050182l

    Article  CAS  Google Scholar 

  39. M. Kumar, S.J. Paddison, Side-chain degradation of perfluorosulfonic acid membranes: An ab-initio study. J. Mater. Res. 27, 1982–1991 (2012). https://doi.org/10.1557/jmr.2012.191

  40. X. Glipa, B. Bonnet, B. Mula, D.J. Jones, J. Rozière, Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J. Mater. Chem. 9, 3045–3049 (1999). https://doi.org/10.1039/a906060j

    Article  CAS  Google Scholar 

  41. Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34, 449–477 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003

    Article  CAS  Google Scholar 

  42. D. Rodriguez, C. Jegat, O. Trinquet, J. Grondin, J.C. Lassègues, Proton conduction in poly (acrylamide)-acid blends. Solid State Ionics 61, 195–202 (1993). https://doi.org/10.1016/0167-2738(93)90354-6

    Article  CAS  Google Scholar 

  43. P. Musto, F.E. Karasz, W.J. MacKnight, Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend. Polymer 34, 2934–2945 (1993). https://doi.org/10.1016/0032-3861(93)90618-K

    Article  CAS  Google Scholar 

  44. R. Bouchet, E. Siebert, Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118, 287–299 (1999). https://doi.org/10.1016/S0167-2738(98)00466-4

    Article  CAS  Google Scholar 

  45. Q. Li, R. He, R.W. Berg, H.A. Hjuler, N.J. Bjerrum, Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics 168, 177–185 (2004). https://doi.org/10.1016/j.ssi.2004.02.013

    Article  CAS  Google Scholar 

  46. C.E. Hughes, S. Haufe, B. Angerstein, R. Kalim, U. Mähr, A. Reiche et al., Probing structure and dynamics in poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] fuel cells with magic-angle spinning NMR. J. Phys. Chem. B 108, 13626–13631 (2004). https://doi.org/10.1021/jp047607c

    Article  CAS  Google Scholar 

  47. A. Noda, M.A.B. Hasan Susan, K. Kudo, S. Mitsushima, K. Hayamizu, M. Watanabe, Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B 107, 4024–4033 (2003). https://doi.org/10.1021/jp022347p

    Article  CAS  Google Scholar 

  48. H. Matsuoka, H. Nakamoto, M.A.B.H. Susan, M. Watanabe, Brønsted acid-base and -polybase complexes as electrolytes for fuel cells under non-humidifying conditions. Electrochim. Acta 50, 4015–4021 (2005). https://doi.org/10.1016/j.electacta.2005.02.038

    Article  CAS  Google Scholar 

  49. T.L. Greaves, C.J. Drummond, Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008). https://doi.org/10.1021/cr068040u

    Article  CAS  Google Scholar 

  50. A. Schechter, R.F. Savinell, Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 147, 181–187 (2002)

    Google Scholar 

  51. M.A.B.H. Susan, M. Yoo, H. Nakamoto, M. Watanabe, A novel Brønsted acid–base system as anhydrous proton conductors for fuel cell electrolytes. Chem. Lett. 32, 836–837 (2003). https://doi.org/10.1246/cl.2003.836

    Article  CAS  Google Scholar 

  52. M.L. Hoarfrost, M. Tyagi, R.A. Segalman, J.A. Reimer, Proton hopping and long-range transport in the protic ionic liquid [Im][TFSI], probed by pulsed-field gradient NMR and Quasi-elastic neutron scattering. J. Phys. Chem. B 116, 8201–8209 (2012). https://doi.org/10.1021/jp3044237

    Article  CAS  Google Scholar 

  53. R. Sood, C. Iojoiu, E. Espuche, F. Gouanvé, G. Gebel, H. Mendil-Jakani et al., Proton conducting ionic liquid doped Nafion membranes: nano-structuration, transport properties and water sorption. J. Phys. Chem. C 116, 24413–24423 (2012). https://doi.org/10.1021/jp306626y

    Article  CAS  Google Scholar 

  54. V. Di Noto, M. Piga, G.A. Giffin, S. Lavina, E.S. Smotkin, J.Y. Sanchez et al., Influence of anions on proton-conducting membranes based on neutralized nafion 117, triethylammonium methanesulfonate, and triethylammonium perfluorobutanesulfonate. 2. electrical properties. J. Phys. Chem. C 116, 1370–1379 (2012). https://doi.org/10.1021/jp204242q

  55. R. Devanathan, A. Venkatnathan, M. Dupuis, Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. J. Phys. Chem. B 111, 8069–8079 (2007). https://doi.org/10.1021/jp0726992

  56. A. Venkatnathan, R. Devanathan, M. Dupuis, Atomistic simulations of hydrated nafion and temperature effects on hydronium ion mobility. J. Phys. Chem. B 111, 7234–7244 (2007). https://doi.org/10.1021/jp0700276

    Article  CAS  Google Scholar 

  57. C.K. Knox, G.A. Voth, Probing selected morphological models of hydrated Nafion using large-scale molecular dynamics simulations. J. Phys. Chem. B 114, 3205–3218 (2010). https://doi.org/10.1021/jp9112409

    Article  CAS  Google Scholar 

  58. K.A. Mauritz, A.J. Hopfinger, Structural properties of membrane ionomers, in Modern Aspects of Electrochemistry (Springer US, Boston, MA, 1982), p. 425–508. https://doi.org/10.1007/978-1-4615-7458-3_6

  59. H.L. Yeager, A. Steck, Cation and water diffusion in Nafion Ion exchange membranes: influence of polymer structure. J. Electrochem. Soc. 128, 1880 (1981). https://doi.org/10.1149/1.2127757

    Article  CAS  Google Scholar 

  60. S.C. Yeo, A. Eisenberg, Physical properties and supermolecular structure of perfluorinated ion-containing (nafion) polymers. J. Appl. Polym. Sci. 21, 875–898 (1977). https://doi.org/10.1002/app.1977.070210401

    Article  CAS  Google Scholar 

  61. J.A. Elliott, S. Hanna, A.M.S. Elliott, G.E. Cooley, Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys. 1, 4855–4863 (1999). https://doi.org/10.1039/a905267d

    Article  CAS  Google Scholar 

  62. A. Vishnyakov, A.V. Neimark, Molecular simulation study of Nafion membrane solvation in water and methanol. J. Phys. Chem. B 104, 4471–4478 (2000). https://doi.org/10.1021/JP993625W

    Article  CAS  Google Scholar 

  63. S.S. Jang, V. Molinero, C. Tahir, W.A. Goddard III., Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence. J. Phys. Chem. B 108, 3149–3157 (2004). https://doi.org/10.1021/jp036842c

    Article  CAS  Google Scholar 

  64. S.S. Jang, V. Molinero, T. Çagin, W.A. Goddard, Effect of monomeric sequence on nanostructure and water dynamics in Nafion 117. Solid State Ionics 175, 805–808 (2004). https://doi.org/10.1016/J.SSI.2004.08.039

    Article  CAS  Google Scholar 

  65. S. Sengupta, R. Pant, P. Komarov, A. Venkatnathan, A.V. Lyulin, Atomistic simulation study of the hydrated structure and transport dynamics of a novel multi acid side chain polyelectrolyte membrane. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.09.078

    Article  Google Scholar 

  66. S. Sengupta, A.V. Lyulin, Molecular dynamics simulations of substrate hydrophilicity and confinement effects in Capped Nafion films. J. Phys. Chem. B 122, 6107–6119 (2018). https://doi.org/10.1021/acs.jpcb.8b03257

    Article  CAS  Google Scholar 

  67. G. Kritikos, R. Pant, S. Sengupta, K.K. Karatasos, A. Venkatnathan, A.V. Lyulin, Nanostructure and dynamics of humidified Nafion-graphene oxide composites via molecular dynamics simulations. J. Phys. Chem. C 122, 22864–22875 (2018). https://doi.org/10.1021/acs.jpcc.8b07170

    Article  CAS  Google Scholar 

  68. S. Sengupta, A.V. Lyulin, Molecular modeling of structure and dynamics of Nafion protonation states. J. Phys. Chem. B 123, 6882–6891 (2019). https://doi.org/10.1021/acs.jpcb.9b04534

    Article  CAS  Google Scholar 

  69. S.J. Paddison, T.A. Zawodzinski Jr., Molecular modeling of the pendant chain in Nafion®. Solid State Ionics 113–115, 333–340 (1998). https://doi.org/10.1016/S0167-2738(98)00298-7

    Article  Google Scholar 

  70. S.J. Paddison, L.R. Pratt, T.A. Zawodzinski, Conformations of perfluoroether sulfonic acid side chains for the modeling of Nafion. J. New Mater. Electrochem. Syst. 2, 183–188 (1999)

    CAS  Google Scholar 

  71. S.J. Paddison, The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes. J. New Mater. Electrochem. Syst. 4, 197–207 (2001)

    CAS  Google Scholar 

  72. D.A. Mologin, P.G. Khalatur, A.R. Khokhlov, Structural organization of water-containing Nafion: a cellular-automaton-based simulation. Macromol. Theory Simul. 11, 587 (2002). https://doi.org/10.1002/1521-3919(20020601)11:5%3c587::AID-MATS587%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  73. P.G. Khalatur, S.K. Talitskikh, A.R. Khokhlov, Structural organization of water-containing Nafion: the integral equation theory. Macromol. Theory Simul. 11, 566 (2002). https://doi.org/10.1002/1521-3919(20020601)11:5%3c566::AID-MATS566%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  74. S. Yamamoto, S.A. Hyodo, A computer simulation study of the mesoscopic structure of the polyelectrolyte membrane Nafion. Polym. J. 35, 519–527 (2003). https://doi.org/10.1295/polymj.35.519

    Article  CAS  Google Scholar 

  75. P.V. Komarov, I.N. Veselov, P.G. Khalatur, Self-organization of amphiphilic block copolymers in the presence of water: A mesoscale simulation. Chem. Phys. Lett. 605–606, 22–27 (2014). https://doi.org/10.1016/J.CPLETT.2014.05.004

    Article  Google Scholar 

  76. J.T. Wescott, Y. Qi, L. Subramanian, C.T. Weston, Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J. Chem. Phys. 124, 134702 (2006). https://doi.org/10.1063/1.2177649

    Article  CAS  Google Scholar 

  77. P.V. Komarov, I.N. Veselov, P.P. Chu, P.G. Khalatur, Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly (ether ether ketone) and Nafion. Soft Matter 6, 3939 (2010). https://doi.org/10.1039/b921369d

    Article  CAS  Google Scholar 

  78. B. Muriithi, D. Loy, Proton conductivity of Nafion/ex-situ sulfonic acid-modified Stöber silica nanocomposite membranes as a function of temperature, silica particles size and surface modification. Membranes (Basel) 6, 12 (2016). https://doi.org/10.3390/membranes6010012

    Article  CAS  Google Scholar 

  79. R. Gosalawit, S. Chirachanchai, S. Shishatskiy, S.P. Nunes, Krytox–Montmorillonite–Nafion® nanocomposite membrane for effective methanol crossover reduction in DMFCs. Solid State Ionics 178, 1627–1635 (2007). https://doi.org/10.1016/J.SSI.2007.10.008

    Article  CAS  Google Scholar 

  80. M.M. Hasani-Sadrabadi, E. Dashtimoghadam, F.S. Majedi, S. Wu, A. Bertsch, H. Moaddel et al., Nafion/Chitosan-wrapped CNT nanocomposite membrane for high-performance direct methanol fuel cells. RSC Adv. 3, 7337 (2013). https://doi.org/10.1039/c3ra40480c

    Article  CAS  Google Scholar 

  81. B.R. Matos, R.A. Isidoro, E.I. Santiago, F.C. Fonseca, Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania. J. Power Sources 268, 706–711 (2014). https://doi.org/10.1016/J.JPOWSOUR.2014.06.097

    Article  CAS  Google Scholar 

  82. A.Z. Weber, A. Kusoglu, Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2, 17207–17211 (2014). https://doi.org/10.1039/C4TA02952F

    Article  CAS  Google Scholar 

  83. M.A. Modestino, D.K. Paul, S. Dishari, S.A. Petrina, F.I. Allen, M.A. Hickner et al., Self-assembly and transport limitations in confined Nafion films. Macromolecules 46, 867–873 (2013). https://doi.org/10.1021/ma301999a

    Article  CAS  Google Scholar 

  84. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim. Acta 46, 799–805 (2001). https://doi.org/10.1016/S0013-4686(00)00679-4

    Article  CAS  Google Scholar 

  85. D. Damasceno Borges, A.A. Franco, K. Malek, G. Gebel, S. Mossa, Inhomogeneous transport in model hydrated polymer electrolyte supported ultrathin films. ACS Nano 7, 6767–6773 (2013). https://doi.org/10.1021/nn401624p

    Article  CAS  Google Scholar 

  86. D. Damasceno Borges, G. Gebel, A.A. Franco, K. Malek, S. Mossa, Morphology of supported polymer electrolyte ultrathin films: a numerical study. J. Phys. Chem. C 119, 1201–1216 (2015). https://doi.org/10.1021/jp507598h

    Article  CAS  Google Scholar 

  87. F.F. Abraham, Y. Singh, The structure of a hard-sphere fluid in contact with a soft repulsive wall. J. Chem. Phys. 67, 2384 (1977). https://doi.org/10.1063/1.435080

    Article  CAS  Google Scholar 

  88. Cha S-H. Recent development of nanocomposite membranes for vanadium redox flow batteries. J. Nanomater. 2015, 1–12 (2015). https://doi.org/10.1155/2015/207525

  89. A. Kusoglu, T.J. Dursch, A.Z. Weber, Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers. Adv. Funct. Mater. 26, 4961–4975 (2016). https://doi.org/10.1002/adfm.201600861

    Article  CAS  Google Scholar 

  90. M. Bass, A. Berman, A. Singh, O. Konovalov, V. Freger, Surface-induced Micelle orientation in Nafion films. Macromolecules 44, 2893–2899 (2011). https://doi.org/10.1021/ma102361f

    Article  CAS  Google Scholar 

  91. S. Cui, J. Liu, M.E. Selvan, D.J. Keffer, B.J. Edwards, W.V. Steele, A molecular dynamics study of a nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B 111, 2208–2218 (2007). https://doi.org/10.1021/jp066388n

    Article  CAS  Google Scholar 

  92. M. Tripathy, P.B.S. Kumar, A.P. Deshpande, Molecular structuring and percolation transition in hydrated sulfonated poly (ether ether ketone) membranes. J. Phys. Chem. B 121, 4873–4884 (2017). https://doi.org/10.1021/acs.jpcb.7b01045

    Article  CAS  Google Scholar 

  93. T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer et al., Water uptake by and transport through Nafion® 117 membranes. J. Electrochem. Soc. 140, 1041 (1993). https://doi.org/10.1149/1.2056194

    Article  CAS  Google Scholar 

  94. M. Bass, A. Berman, A. Singh, O. Konovalov, V. Freger, Surface structure of nafion in vapor and liquid. J. Phys. Chem. B 114, 3784–3790 (2010). https://doi.org/10.1021/jp9113128

    Article  CAS  Google Scholar 

  95. S. Goswami, S. Klaus, J. Benziger, Wetting and absorption of water drops on nafion films. Langmuir 24, 8627–8633 (2008). https://doi.org/10.1021/la800799a

    Article  CAS  Google Scholar 

  96. N.J. Economou, A.M. Barnes, A.J. Wheat, M.S. Schaberg, S.J. Hamrock, S.K. Buratto, Investigation of humidity dependent surface morphology and proton conduction in multi-acid side chain membranes by conductive probe atomic force microscopy. J. Phys. Chem. B 119, 14280–14287 (2015). https://doi.org/10.1021/acs.jpcb.5b07255

    Article  CAS  Google Scholar 

  97. H. Noguchi, K. Taneda, H. Minowa, H. Naohara, K. Uosaki, Humidity-dependent structure of surface water on perfluorosulfonated ionomer thin film studied by sum frequency generation spectroscopy. J. Phys. Chem. C 114, 3958–3961 (2010). https://doi.org/10.1021/jp907194k

    Article  CAS  Google Scholar 

  98. O. Kwon, Y. Kang, S. Wu, D.M. Zhu, Characteristics of microscopic proton current flow distributions in fresh and aged nafion membranes. J/ Phys/ Chem/ B 114, 5365–5370 (2010). https://doi.org/10.1021/jp911182q

    Article  CAS  Google Scholar 

  99. R.S. McLean, M. Doyle, B.B. Sauer, High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques. Macromolecules 33, 6541–6550 (2000). https://doi.org/10.1021/ma000464h

    Article  CAS  Google Scholar 

  100. D. Novitski, S. Holdcroft, Determination of O2 mass transport at the Pt | PFSA ionomer interface under reduced relative humidity. ACS Appl Mater. Interfaces 7, 27314–27323 (2015). https://doi.org/10.1021/acsami.5b08720

    Article  CAS  Google Scholar 

  101. J. Tang, W. Yuan, J. Zhang, H. Li, Y. Zhang, Evidence for a crystallite-rich skin on perfluorosulfonate ionomer membranes. RSC Adv. 3, 8947–8952 (2013). https://doi.org/10.1039/c3ra40430g

    Article  CAS  Google Scholar 

  102. F.N. Büchi, S. Srinivasa, Operating proton exchange membrane fuel cells without external humidification of the reactant gases. J. Electrochem. Soc. 144, 2767 (1997). https://doi.org/10.1149/1.1837893

    Article  Google Scholar 

  103. H.S. Park, Y.J. Kim, W.H. Hong, Y.S. Choi, H.K. Lee, Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38, 2289–2295 (2005). https://doi.org/10.1021/ma047650y

    Article  CAS  Google Scholar 

  104. K. Pourzare, Y. Mansourpanah, S. Farhadi, Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Res. J. 3, 496–513 (2016). https://doi.org/10.18331/BRJ2016.3.4.4

    Article  CAS  Google Scholar 

  105. A. Enotiadis, K. Angjeli, N. Baldino, I. Nicotera, D. Gournis, Graphene-based nafion nanocomposite membranes: enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets. Small 8, 3338–3349 (2012). https://doi.org/10.1002/smll.201200609

    Article  CAS  Google Scholar 

  106. G. Liu, W. Jin, N. Xu, Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015). https://doi.org/10.1039/c4cs00423j

    Article  CAS  Google Scholar 

  107. B.G. Choi, Y.S. Huh, Y.C. Park, D.H. Jung, W.H. Hong, H. Park, Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon N Y 50, 5395–5402 (2012). https://doi.org/10.1016/j.carbon.2012.07.025

    Article  CAS  Google Scholar 

  108. R. Kumar, C. Xu, K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. RSC Adv. 2, 8777 (2012). https://doi.org/10.1039/c2ra20225e

    Article  CAS  Google Scholar 

  109. H. Zarrin, D. Higgins, Y. Jun, Z. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J. Phys. Chem. C 115, 20774–20781 (2011). https://doi.org/10.1021/jp204610j

    Article  CAS  Google Scholar 

  110. D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J. Memb. Sci. 452, 20–28 (2014). https://doi.org/10.1016/j.memsci.2013.10.018

    Article  CAS  Google Scholar 

  111. M.R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma et al., Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097–8100 (2013). https://doi.org/10.1021/ja401060q

    Article  CAS  Google Scholar 

  112. T. Bayer, S.R. Bishop, M. Nishihara, K. Sasaki, S.M. Lyth, Characterization of a graphene oxide membrane fuel cell. J. Power Sources 272, 239–247 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.071

    Article  CAS  Google Scholar 

  113. L. Wang, J. Kang, J.-D. Nam, J. Suhr, A.K. Prasad, S.G. Advani, Composite membrane based on graphene oxide sheets and Nafion for polymer electrolyte membrane fuel cells. ECS Electrochem. Lett. 4, F1-4 (2014). https://doi.org/10.1149/2.0021501eel

    Article  CAS  Google Scholar 

  114. Z. Jiang, X. Zhao, Y. Fu, A. Manthiram, Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells. J. Mater. Chem. 22, 24862–24869 (2012). https://doi.org/10.1039/c2jm35571j

    Article  CAS  Google Scholar 

  115. N. Üregen, K. Pehlivanoğlu, Y. Özdemir, Y. Devrim, Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. Int. J. Hydrog. Energ 42, 2636–2647 (2017). https://doi.org/10.1016/j.ijhydene.2016.07.009

    Article  CAS  Google Scholar 

  116. R. Rudra, V. Kumar, N. Pramanik, P.P. Kundu, Graphite oxide incorporated crosslinked polyvinyl alcohol and sulfonated styrene nanocomposite membrane as separating barrier in single chambered microbial fuel cell. J. Power Sources 341, 285–293 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.028

  117. K. Karatasos, G. Kritikos, Characterization of a graphene oxide/poly(acrylic acid) nanocomposite by means of molecular dynamics simulations. RSC Adv. 6, 109267–109277 (2016). https://doi.org/10.1039/C6RA22951D

    Article  CAS  Google Scholar 

  118. K. Karatasos, G. Kritikos, A microscopic view of graphene-oxide/poly(acrylic acid) physical hydrogels: effects of polymer charge and graphene oxide loading. Soft Matter 14, 614–627 (2018). https://doi.org/10.1039/c7sm02305g

    Article  CAS  Google Scholar 

  119. R. Devanathan, D. Chase-Woods, Y. Shin, D.W. Gotthold, Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep29484

    Article  Google Scholar 

  120. S. Feng, G.A. Voth, Proton solvation and transport in hydrated nafion. J. Phys. Chem. B 115, 5903–5912 (2011). https://doi.org/10.1021/jp2002194

    Article  CAS  Google Scholar 

  121. R. Devanathan, A. Venkatnathan, R. Rousseau, M. Dupuis, T. Frigato, W. Gu et al., Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane. J. Phys. Chem. B 114, 13681–13690 (2010). https://doi.org/10.1021/jp103398b

    Article  CAS  Google Scholar 

  122. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in KDD-96 Proceedings, vol. 96, p. 226–231 (1996). https://doi.org/10.1103/physicsphysiquefizika.3.255

  123. M.E. Fisher, The theory of condensation and the critical point. Phys. Phys. Fiz 3, 255–283 (1967). https://doi.org/10.1103/PhysicsPhysiqueFizika.3.255

    Article  Google Scholar 

  124. W. vanMegen, T.C. Mortensen, J. Müller, S.R. Williams, W. van Megen, T.C. Mortensen et al., Measurement of the self intermediate scattering function of suspensions of hard spherical particles near the glass transition. Phys. Rev. E 58, 6073–6085 (1998). https://doi.org/10.1103/PhysRevE.58.6073

    Article  CAS  Google Scholar 

  125. R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys. 167, 179–214 (1854). https://doi.org/10.1002/andp.18541670203

    Article  Google Scholar 

  126. K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011) https://doi.org/10.1007/978-1-4419-7649-9

  127. G. Kritikos, K. Karatasos, Temperature dependence of dynamic and mechanical properties in poly(acrylic acid)/graphene oxide nanocomposites. Mater. Today Commun. 13, 359–366 (2017). https://doi.org/10.1016/j.mtcomm.2017.11.006

    Article  CAS  Google Scholar 

  128. G. Kritikos, N. Vergadou, I.G. Economou, Molecular dynamics simulation of highly confined Glassy ionic liquids. J. Phys. Chem. C 120, 1013–1024 (2016). https://doi.org/10.1021/acs.jpcc.5b09947

    Article  CAS  Google Scholar 

  129. R. Devanathan, A. Venkatnathan, M. Dupuis, Atomistic simulation of Nafion membrane. 2. Dynamics of water molecules and hydronium ions. J. Phys. Chem. B111, 13006–13013 (2007). https://doi.org/10.1021/jp0761057

  130. S. Pahari, C.K. Choudhury, P.R. Pandey, M. More, A. Venkatnathan, S. Roy, Molecular dynamics simulation of phosphoric acid doped monomer of polybenzimidazole: a potential component polymer electrolyte membrane of fuel cell. J. Phys. Chem. B 116, 7357–7366 (2012). https://doi.org/10.1021/jp301117m

    Article  CAS  Google Scholar 

  131. S. Pahari, S. Roy, Structural and conformational properties of polybenzimidazoles in melt and phosphoric acid solution: a polyelectrolyte membrane for fuel cells. RSC Adv. 6, 8211–8221 (2016). https://doi.org/10.1039/C5RA22159E

    Article  CAS  Google Scholar 

  132. K. Shirata, S. Kawauchi, Effect of benzimidazole configuration in polybenzimidazole chain on interaction with phosphoric acid: a DFT study. J. Phys. Chem. B 119, 592–603 (2015). https://doi.org/10.1021/jp510067n

    Article  CAS  Google Scholar 

  133. S.C. Kumbharkar, U.K. Kharul, New N-substituted ABPBI: synthesis and evaluation of gas permeation properties. J. Memb. Sci. 360, 418–425 (2010). https://doi.org/10.1016/j.memsci.2010.05.041

    Article  CAS  Google Scholar 

  134. M.A. Habib, J.O. Bockris, Adsorption at the solid/solution interface. An FTIR study of phosphoric acid on platinum and gold. J. Electrochem. Soc.132, 108 (1985)

    Google Scholar 

  135. M. Kumar, A. Venkatnathan, Mechanism of proton transport in ionic-liquid-doped perfluorosulfonic acid membranes. J. Phys. Chem. B 117, 14449–14456 (2013). https://doi.org/10.1021/jp408352w

    Article  CAS  Google Scholar 

  136. M. Kumar, A. Venkatnathan, Quantum chemistry study of proton transport in imidazole chains. J. Phys. Chem. B 119, 3213–3222 (2015). https://doi.org/10.1021/jp508994c

    Article  CAS  Google Scholar 

  137. R. Pant, M. Kumar, A. Venkatnathan, Quantum mechanical investigation of proton transport in imidazolium methanesulfonate ionic liquid. J. Phys. Chem. C 121, 7069–7080 (2017). https://doi.org/10.1021/acs.jpcc.6b11997

    Article  CAS  Google Scholar 

  138. A.P. Sunda, M. More, A. Venkatnathan, A molecular investigation of the nanostructure and dynamics of phosphoric-triflic acid blends of hydrated ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membranes. Soft Matter 9, 1122–1132 (2013). https://doi.org/10.1039/c2sm26927a

    Article  CAS  Google Scholar 

  139. M. More, S. Pahari, S. Roy, A. Venkatnathan, Characterization of the structures and dynamics of phosphoric acid doped benzimidazole mixtures: a molecular dynamics study. J. Mol. Model 19, 109–118 (2013). https://doi.org/10.1007/s00894-012-1519-8

    Article  CAS  Google Scholar 

  140. M. More, A.P. Sunda, A. Venkatnathan, Polymer chain length, phosphoric acid doping and temperature dependence on structure and dynamics of an ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membrane. RSC Adv. 4, 19746–19755 (2014). https://doi.org/10.1039/c4ra01421a

    Article  CAS  Google Scholar 

  141. J.G.E.M. Fraaije, B.A.C. van Vlimmeren, N.M. Maurits, M. Postma, O.A. Evers, C. Hoffmann et al., The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J. Chem. Phys. 106, 4260–4269 (1997). https://doi.org/10.1063/1.473129

    Article  CAS  Google Scholar 

  142. P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992). https://doi.org/10.1209/0295-5075/19/3/001

    Article  Google Scholar 

  143. N.M. Maurits, B.A.C. Van Vlimmeren, J.G.E.M. Fraaije, Mesoscopic phase separation dynamics of compressible copolymer melts. (1997)

    Google Scholar 

  144. N.M. Maurits, A.V.M. Zvelindovsky, G.J.A. Sevink, B.A.C. Van Vlimmeren, J.G.E.M. Fraaije, N.M. Maurits et al., Hydrodynamic effects in three-dimensional microphase separation of block copolymers). Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach. J. Chem. Phys. 108, 9150–9154 (1998). https://doi.org/10.1063/1.476362.

  145. A.V.M. Zvelindovsky, G.J.A. Sevink, B.A.C. van Vlimmeren, N. Maurits, J.E.M. Fraaije, Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach: the dynamic density-functional approach. Phys. Rev. E 57, R4879–R4882 (1998)

    Article  CAS  Google Scholar 

  146. J.J. Krueger, P.P. Simon, H.J. Ploehn, Phase behavior and microdomain structure in perfluorosulfonated ionomers via self-consistent mean field theory (2002). https://doi.org/10.1021/MA0020638

  147. J.M.V.A. Koelman, P.J. Hoogerbrugge, Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett. 21, 363–368 (1993). https://doi.org/10.1209/0295-5075/21/3/018

    Article  CAS  Google Scholar 

  148. R.D. Groot, P.B. Warren, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997). https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  149. P.J. Flory, M. Volkenstein, Statistical mechanics of chain molecules. Biopolymers 8, 699–700 (1969). https://doi.org/10.1002/bip.1969.360080514

    Article  Google Scholar 

  150. J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, 2002)

    Google Scholar 

  151. M.L. Huggins, The solubility of nonelectrolytes. By Joel H. Hildebrand and Robert S. Scott. J. Phys. Chem. 55, 619–620 (1951). https://doi.org/10.1021/j150487a027.

  152. P.J. Flory, Fifteenth Spiers Memorial Lecture. Thermodynamics of polymer solutions. Discuss. Faraday Soc. 49, 7 (1970). https://doi.org/10.1039/df9704900007

  153. A.A. Askadiskii, V.I. Kondraschenko, Computer material science of polymers. Sci. World 1, 544 (1999)

    Google Scholar 

  154. R. Consiglio, D.R. Baker, G. Paul, H.E. Stanley, Continuum percolation thresholds for mixtures of spheres of different sizes. Phys. A Stat. Mech. Its Appl. 319, 49–55 (2003). https://doi.org/10.1016/S0378-4371(02)01501-7

    Article  Google Scholar 

  155. M.J. Park, K.H. Downing, A. Jackson, E.D. Gomez, A.M. Minor, D. Cookson et al., Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation (2007). https://doi.org/10.1021/NL072617L

  156. S. Förster, M. Konrad, From self-organizing polymers to nano- and biomaterials. J. Mater. Chem. 13, 2671–2688 (2003). https://doi.org/10.1039/B307512P

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Lyulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengupta, S. et al. (2021). Multiscale Modeling Examples: New Polyelectrolyte Nanocomposite Membranes for Perspective Fuel Cells and Flow Batteries. In: Ginzburg, V.V., Hall, L.M. (eds) Theory and Modeling of Polymer Nanocomposites. Springer Series in Materials Science, vol 310. Springer, Cham. https://doi.org/10.1007/978-3-030-60443-1_6

Download citation

Publish with us

Policies and ethics