Skip to main content

Challenges Associated to the Multi-Scale Modeling of Fuel Electro-Oxidation for Fuel Cell Applications

  • Chapter
  • First Online:
Design and Applications of Nanomaterials for Sensors

Abstract

The high-cost of materials and efficiency limitations of chemical fuel cells is a topic of primary concern. Industries are currently focusing on proton-exchange membrane (PEM) fuel cells engineering and design for improved performance, durability, and reduced cost. This situation has led to an urgent need for understanding, predicting, and optimizing the various transport and electrochemical processes that occur in PEM fuel cells, where modeling plays a key role. Challenges associated to a multi-scale modeling approach to model fuel electro-oxidation in PEM and bio fuel cells are discussed here. A combination of tools involving Density Functional Theory, Transition State Theory, Molecular Mechanics and Kinetic Monte Carlo are combined in order to model fuel electro-oxidation. Information regarding energy barriers and pre-exponential factors needed to determine reaction rates are obtained from Density Functional Theory and Transition State Theory respectively. These microscopic reaction rates are then provided as inputs in a Kinetic Monte Carlo approach, and the fuel oxidation process is modeled on a 2-D reactive surface representing the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaron D, Yiacoumi S, Tsouris C (2008) Effects of proton-exchange membrane fuel-cell operating conditions on charge transfer resistances measured by electrochemical impedance spectroscopy. Sep Sci Technol 43(9–10):2307–2320

    Article  Google Scholar 

  2. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Chichester

    Book  Google Scholar 

  3. Sahu AK et al (2009) Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview. Bull Mater Sci 32(3):285–294

    Article  Google Scholar 

  4. DOE announces up to $ 74 million for fuel cell research and development. Department of Energy, Editor. 2010, GPO, Washington. http://energy.gov/articles/doe-announces-74-million-fuelcell-research-and-development.

  5. Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  Google Scholar 

  6. Cleghorn SJC, Ren X, Springer TE, Wilson MS, Zawodzinski C, Zawodzinski TA, Gottesfeld S (1997) PEM fuel cells for transportation and stationary power generation applications. Int J Hydrog Energy 22:1137–1144

    Article  Google Scholar 

  7. Iwase M, Kawatsu S (1995) Optimized CO tolerant electrocatalysts for polymer electrolyte fuel cells. In: Proceedings of the first International Symposium on proton conducting membrane fuel cells

    Google Scholar 

  8. Beard BC, Ross PN (1990) The structure and activity of Pt†co alloys as oxygen reduction electrocatalysts. J Electrochem Soc 137(11):3368–3374

    Article  Google Scholar 

  9. Bockris JOM, Khan SUM (1993) Surface electrochemistry: a molecular level approach. Plenum Press, New York

    Book  Google Scholar 

  10. Ghosh M et al (1995) The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 Å. Structure (London) 3:1771–1787

    Google Scholar 

  11. Fernandez GM, Anderson JA (1996) Alloy formation and stability in Pd-Cu bimetallic catalysts. J Phys Chem 100:16247–16254

    Article  Google Scholar 

  12. Toda T et al (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756

    Article  Google Scholar 

  13. Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460(1):258–262

    Article  Google Scholar 

  14. Neergat M, Shukla AK, Gandhi KS (2001) Platinum-based alloys as oxygen reduction catalysts for solid polymer electrolyte direct methanol fuel cells. J Appl Electrochem 31(4):373–378

    Article  Google Scholar 

  15. Huang SP, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters. J Surf Sci 545:163–179

    Article  Google Scholar 

  16. Markovic NM et al (1999) Oxygen reduction reaction on Pt(111): effects of bromide. J Electroanal Chem 467(1–2):157–163

    Article  Google Scholar 

  17. Himo F (2002) Catalytic mechanism of benzylsuccinate synthase, a theoretical study. J Phys Chem B 106(31):7688

    Article  Google Scholar 

  18. Combe N, Jensen P, Pimpinelli A (2000) Changing shapes in the nanoworld. Phys Rev Lett 85(1):110–113

    Article  Google Scholar 

  19. Heinebrodt M et al (1999) Bonding character of bimetallic clusters Au[sub n]X[sub m] (X = Al, In, Cs). J Chem Phys 110(20):9915–9921

    Article  Google Scholar 

  20. Vigier F et al (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40(1–4):111–121

    Article  Google Scholar 

  21. Kannan AM, Renugopalakrishnan V, Filipek S, Li P, Audette GF, Munukutla L (2009) Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins. J Nanosci Nanotechnol 3:1665–1678

    Google Scholar 

  22. Hibbert EG et al (2005) Directed evolution of biocatalytic processes. Biomol Eng 22(1–3):11–19

    Article  Google Scholar 

  23. Hollmann F et al (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13(2):226–265

    Article  Google Scholar 

  24. Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies. Biochim Biophys Acta (BBA)—specialized section on biophysical subjects 88(2):375–383

    Google Scholar 

  25. Kim J, Ping Wang HJ (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv 24:296–308

    Article  Google Scholar 

  26. Liu L et al (2008) A novel inhibition biosensor constructed by layer-by-layer technique based on biospecific affinity for the determination of sulfide. Sens Actuators B: Chem 129(1):218–224

    Google Scholar 

  27. Suwansa-ard S et al (2005) Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosens Bioelectron 21(3):445–454

    Article  Google Scholar 

  28. Sakai H et al (2009) A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ Sci 2(1):133–138

    Article  Google Scholar 

  29. Laurinavicius V et al (2002) Bioelectrochemical application of some PQQ-dependent enzymes. Bioelectrochemistry 55:29–32

    Article  Google Scholar 

  30. Duine JA (1999) The PQQ story (Review). J Biosci Bioeng 88:231–236

    Article  Google Scholar 

  31. Lapėnaitė I, Kurtinaitienė B, Pliuškys L, Laurinavičius V, Bachmatova I, Marcinkevičienė L, Ramanavičius A (2003) Application of PQQ-GDH based polymeric layers in design of biosensors for detection of heavy metals. Mater Sci (MEDŽIAGOTYRA) 9(4):431–435

    Google Scholar 

  32. Zhang XC, Ranta A, Halme A (2006) Direct methanol biocatalytic fuel cell—considerations of restraints on electron transfer. Biosens Bioelectron 21:2052–2057

    Article  Google Scholar 

  33. Zhang XC, Ranta A, Halme A (2003) Effect of different catalytic oxidants on the performance of a biocatalytic methanol fuel cell. In: Proceedings 204th meeting of the electrochemical society

    Google Scholar 

  34. Tozzini V (2010) Multiscale modeling of proteins. Acc Chem Res 43:220–230

    Article  Google Scholar 

  35. Dalby PA (2007) Engineering enzymes for biocatalysis. Recent Pat Biotechnol 1:1–9

    Google Scholar 

  36. Parks JM, Imhof P, Smith JC (2010) Understanding enzyme catalysis using computer simulation. Encyclopedia of catalysis 2nd edition. Wiley

    Google Scholar 

  37. Lyubartsev A, Tu Y, Laaksonen A (2009) Hierarchical multiscale modelling scheme from first principles to mesoscale. J Comput Theor Nanosci 6:1–9

    Google Scholar 

  38. Medina GM, Rey RM (2009) Molecular and multiscale modeling: review on the theories and applications in chemical engineering. CT&F—Ciencia, Tecnologíay Futuro 3(5):205–224

    Google Scholar 

  39. Car R (2002) Introduction to density-functional theory and ab-initio molecular dynamics. Quant Struct-Activity Relatsh 21(2):97–104

    Article  Google Scholar 

  40. Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55(1):427–455

    Article  Google Scholar 

  41. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Google Scholar 

  42. Nieminen RM (2002) From atomistic simulation towards multiscale modelling of materials. J Phys Condens Matter 14:2859–2876

    Article  Google Scholar 

  43. Lukkien JJ et al (1998) Efficient Monte Carlo methods for the simulation of catalytic surface reactions. Phys Rev E 58(2):2598–2610

    Article  Google Scholar 

  44. Nieminen RM, Jansen APJ (1997) Monte Carlo simulations of surface reactions. Appl Catal A:General 160:99–123

    Google Scholar 

  45. Dandala NKR, Jansen APJ, Mainardi DS (2010) A multi-scale modeling approach for studying MDH-catalyzed methanol oxidation. In: Derosa P, Cagin T (eds) Multiscale modeling: from atoms to devices. CRC Press, Florida, pp 91–112

    Chapter  Google Scholar 

  46. Hills CW et al (1999) Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors. Langmuir 15(3):690–800

    Article  Google Scholar 

  47. Thomas G (2000) Overview of storage development. D.o. Energy, San Ramon

    Google Scholar 

  48. Vigier F et al (2004) Development of anode catalysts for a direct ethanol fuel cell. J Appl Electrochem 34(4):439–446

    Article  Google Scholar 

  49. Datta J et al (2009) A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell. Bull Mater Sci 32(6):643–652

    Article  Google Scholar 

  50. Ribeiro J et al (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38(5):653–662

    Article  Google Scholar 

  51. Demirbas A (2008) Direct use of methanol in fuel cells. Energy Sour Part A Recovery Util Environ Eff 30(6):529–535

    Article  Google Scholar 

  52. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sour 114(1):32–53

    Article  Google Scholar 

  53. Gurau B et al (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation 1. J Phys Chem B 102(49):9997–10003

    Article  Google Scholar 

  54. Ferrin P et al (2009) Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted–Evans–Polanyi relations. J Am Chem Soc 131(16):5809–5815

    Article  Google Scholar 

  55. Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells: part I. Preparation methods and structural characteristics. Appl Catal B Environ 74(3–4):324–336

    Article  Google Scholar 

  56. Westmoreland PR et al (2002) Applying molecular and materials modeling. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  57. Jusys Z et al (2002) Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. J Power Sour 105(2):297–304

    Article  Google Scholar 

  58. Marinov NM (1999) A detailed chemical kinetic model for high temperature ethanol oxidation. Shock 3:2

    Google Scholar 

  59. Wang HF, Liu ZP (2008) Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J Am Chem Soc 130(33):10996

    Article  Google Scholar 

  60. Accelrys Inc (2003) DMOL3 user guide 2003. San Diego

    Google Scholar 

  61. Yang LX et al (2004) A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation. J Power Sour 137(2):257–263

    Article  Google Scholar 

  62. Bruce DA (2013) Catalysis: making the leap to tomorrow’s fuels. In: LA-SiGMA. Ruston

    Google Scholar 

  63. Himo F (2006) Quantum chemical modeling of enzyme active sites and reaction mechanisms. Theor Chem Acc 116:232–240

    Article  Google Scholar 

  64. Siegbahn PE, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. WIREs Comput Mol Sci 1:323–336

    Google Scholar 

  65. Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14:643–651

    Article  Google Scholar 

  66. Shi-Lu C, Wei-Hai F, Himo F (2008) Technical aspects of quantum chemical modeling of enzymatic reactions: the case of phosphotriesterase. Theor Chem Acc 120:515–522

    Article  Google Scholar 

  67. Noodleman L et al (2004) Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 104:459–508

    Article  Google Scholar 

  68. Lovell T et al (2003) Density functional methods applied to metalloenzymes. Coordination Chem Rev 238–239: 211–232

    Article  Google Scholar 

  69. Idupulapati NB, Mainardi DS (2009) Coordination and binding of ions in Ca2+- and Ba2+-containing methanol dehydrogenase and interactions with methanol. J Mol Struct: THEOCHEM 901(1–3):72

    Google Scholar 

  70. Idupulapati NB, Mainardi DS (2010) Methanol electro-oxidation by methanol dehydrogenase enzymatic catalysts: a computational study. In: Balbuena PB, Subramanian VR (eds) Theory and experiment in electrocatalysis. Springer, New York, pp 243–274

    Chapter  Google Scholar 

  71. Williams PA et al (2005) The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Cryst Sect D D61:75–79

    Google Scholar 

  72. Anthony C, Williams P (2003) The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647:18–23

    Article  Google Scholar 

  73. Anthony C (2000) Methanol dehydrogenase, a PQQ-containing quinoprotein dehydrogenase. In: Holzenburg A, Scrutton NS (eds) Subcellular biochemistry. Kluwer Academic, New York, pp 73–118

    Google Scholar 

  74. Becke AD (1988) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 88:2547

    Article  Google Scholar 

  75. Lee C, Yang W, Parr R (1998) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 37:786

    Google Scholar 

  76. Idupulapati NB, Mainardi DS (2008) A DMOL3 study of the methanol addition-elimination oxidation mechanism by methanol dehydrogenase enzyme. Mol Sim 34:1057–1064

    Article  Google Scholar 

  77. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland Press, London

    Google Scholar 

  78. Idupulapati NB, Mainardi DS (2010) Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: effect of substitution of calcium by barium in the active site. J Phys Chem A 114(4):1887

    Article  Google Scholar 

  79. Sarmaa AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela S. Mainardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fung, KK., Kharidehal, P., Mainardi, D. (2014). Challenges Associated to the Multi-Scale Modeling of Fuel Electro-Oxidation for Fuel Cell Applications. In: Seminario, J. (eds) Design and Applications of Nanomaterials for Sensors. Challenges and Advances in Computational Chemistry and Physics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8848-9_5

Download citation

Publish with us

Policies and ethics