Skip to main content

Acetogenic Bacteria for Biotechnological Applications

  • Chapter
  • First Online:
Enzymes for Solving Humankind's Problems

Abstract

Acetogenic bacteria are a group of strictly anaerobic bacteria that employ the Wood–Ljungdahl pathway to reduce two molecules of CO2 to acetyl-CoA, the central intermediate to various chemical compounds such as acetate, ethanol or butyrate. The capability of acetogens to utilize a wide range of substrates including industrial waste gas, methanol, formate and CO has led to a tremendous interest over the last decade to use them as industrial platform organisms to produce these valuable chemical compounds. In addition, some acetogens also possess a unique enzyme complex that directly reduces CO2 to formate with H2 as electron donor. This complex is superior over any chemical catalyst in hydrogenation of CO2 and, therefore, these acetogens are also promising candidates for storage or production of hydrogen as well as carbon capture and storage. In this chapter, we discuss the biochemistry of acetogenic bacteria and give an overview of highlighted acetogenic organisms with respect to their biotechnical applications. Moreover, we discuss the progress that has been made in the development of metabolically engineered acetogens as biocatalysts for the production of valuable compounds such as acetone or biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann NY Acad Sci 1125:100–128

    Article  CAS  PubMed  Google Scholar 

  2. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schuchmann K, Müller V (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82:4056–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: Past and current perspectives. In: Drake HL (ed) Acetogenesis. Springer, US, New York, pp 3–60

    Chapter  Google Scholar 

  6. Müller V (2008) Bacterial fermentation. In: Encyclopedia of life sciences. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  7. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P (2018) Bacterial anaerobic synthesis gas (syngas) and CO2+H2 fermentation. Adv Appl Microbiol 103:143–221

    Article  CAS  PubMed  Google Scholar 

  9. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022

    Article  CAS  PubMed  Google Scholar 

  10. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72

    Article  PubMed  CAS  Google Scholar 

  12. Humphreys CM, Minton NP (2018) Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr Opin Biotechnol 50:174–181

    Article  CAS  PubMed  Google Scholar 

  13. Müller V (2019) New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol 37:1344–1354

    Article  PubMed  CAS  Google Scholar 

  14. Schwarz FM, Schuchmann K, Müller V (2018) Hydrogenation of CO2 at ambient pressure catalyzed by a highly active thermostable biocatalyst. Biotechnol Biofuels 11:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382–1385

    Article  CAS  PubMed  Google Scholar 

  16. Müller V, Inkamp F, Rauwolf A, Küsel K, Drake HL (2004) Molecular and cellular biology of acetogenic bacteria. In: Nakano M, Zuber P (eds) Strict and facultative anaerobes: medical and environmental aspects. Horizon Scientific Press, Norfolk, pp 251–281

    Google Scholar 

  17. Poehlein A, Cebulla M, Ilg MM, Bengelsdorf FR, Schiel-Bengelsdorf B, Whited G, Andreesen JR, Gottschalk G, Daniel R, Dürre P (2015) The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. mBio 6:e01168–01115

    Google Scholar 

  18. Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Huang H, Kahnt J, Müller AP, Köpke M, Thauer RK (2013) NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195:4373–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832

    CAS  PubMed  Google Scholar 

  21. Maia LB, Moura JJ, Moura I (2015) Molybdenum and tungsten-dependent formate dehydrogenases. J Biol Inorg Chem 20:287–309

    Article  CAS  PubMed  Google Scholar 

  22. O’Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248:403–408

    CAS  PubMed  Google Scholar 

  23. Ragsdale SW, Ljungdahl LG (1984) Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii. J Biol Chem 259:3499–3503

    CAS  PubMed  Google Scholar 

  24. Moore MR, O’Brien WE, Ljungdahl LG (1974) Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. J Biol Chem 249:5250–5253

    CAS  PubMed  Google Scholar 

  25. Wohlfarth G, Geerligs G, Diekert G (1990) Purification and properties of a NADH-dependent 5,10-methylenetetrahydrofolate reductase from Peptostreptococcus productus. Eur J Biochem 192:411–417

    Article  CAS  PubMed  Google Scholar 

  26. Clark JE, Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J Biol Chem 259:10845–10849

    CAS  PubMed  Google Scholar 

  27. Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci USA 107:18138–18142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schölmerich MC, Müller V (2019) Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. Proc Natl Acad Sci USA 116:6329–6334

    Article  CAS  Google Scholar 

  29. Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz O, Brandt K, Müller V, Faraldo-Gomez JD, Meier T (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat Commun 5:5286

    Article  PubMed  Google Scholar 

  30. Schölmerich MC, Katsyv A, Dönig J, Hackmann TJ, Müller V (2020) Energy conservation involving 2 respiratory circuits. Proc Natl Acad Sci USA 117:1167–1173

    Article  CAS  Google Scholar 

  31. Schuchmann K, Müller V (2012) A bacterial electron bifurcating hydrogenase. J Biol Chem 287:31165–31171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wiechmann A, Ciurus S, Oswald F, Seiler VN, Müller V (2020) It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell. ISME J 14:1561–1570

    Google Scholar 

  33. Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE 7:e33439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Dürre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol 7:1036

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang H, Wang S, Moll J, Thauer RK (2012) Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 194:3689–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Müller V, Frerichs J (2013) Acetogenic bacteria. In: Encyclopedia of life sciences. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  37. Daniell J, Köpke M, Simpson SD (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417

    Article  CAS  Google Scholar 

  38. Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694

    Article  PubMed  PubMed Central  Google Scholar 

  39. Daniell J, Nagaraju S, Burton F, Köpke M, Simpson SD (2016) Low-carbon fuel and chemical production by anaerobic gas fermentation. Adv Biochem Eng Biotechnol 156:293–321

    PubMed  Google Scholar 

  40. Dürre P (2005) Formation of solvents in clostridia. In: Dürre P (ed) Handbook on Clostridia. CRC Press-Taylor and Francis Group, Boca Raton, USA, pp 671–693

    Chapter  Google Scholar 

  41. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: A comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  42. Ajanovic A (2011) Biofuels versus food production: Does biofuels production increase food prices? Energy 36:2070–2076

    Article  Google Scholar 

  43. Armaroli N, Balzani V (2011) The hydrogen issue. Chem Sus Chem 4:21–36

    Article  CAS  Google Scholar 

  44. Brandon NP, Kurban Z (2017) Clean energy and the hydrogen economy. Philos Trans Royal Soc A 375:20160400

    Article  CAS  Google Scholar 

  45. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bact 27:355–361

    Article  CAS  Google Scholar 

  46. Demler M, Weuster-Botz D (2010) Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii. Biotechnol Bioeng 108:470–474

    Article  CAS  Google Scholar 

  47. Karekar SC, Srinivas K, Ahring BK (2019) Kinetic study on heterotrophic growth of Acetobacterium woodii on lignocellulosic substrates for acetic acid production. Fermentation 5:17

    Article  CAS  Google Scholar 

  48. Suzuki T, Matsuo T, Ohtaguchi K, Koide K (1993) Continuous production of acetic acid from CO2 in repeated-batch cultures using flocculated cells of Acetobacterium woodii. J Chem Eng Jpn 26:459–462

    Article  CAS  Google Scholar 

  49. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115:12936–12973

    Article  CAS  PubMed  Google Scholar 

  50. Preuster P, Papp C, Wasserscheid P (2017) Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc Chem Res 50:74–85

    Article  CAS  PubMed  Google Scholar 

  51. Eppinger J, Huang KW (2017) Formic acid as a hydrogen energy carrier. ACS Energy Lett 2:188–195

    Article  CAS  Google Scholar 

  52. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J Am Chem Soc 135:11533–11536

    Article  CAS  PubMed  Google Scholar 

  53. Hull JF, Himeda Y, Wang WH, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4:383–388

    Article  CAS  PubMed  Google Scholar 

  54. Ceccaldi P, Schuchmann K, Müller V, Elliott SJ (2017) The hydrogen dependent CO2 reductase: the first completely CO tolerant FeFe-hydrogenase. Energy Environ Sci 10:503–508

    Article  CAS  Google Scholar 

  55. Baffert C, Bertini L, Lautier T, Greco C, Sybirna K, Ezanno P, Etienne E, Soucaille P, Bertrand P, Bottin H, Meynial-Salles I, De Gioia L, Leger C (2011) CO disrupts the reduced H-cluster of FeFe hydrogenase. A combined DFT and protein film voltammetry study. J Am Chem Soc 133:2096–2099

    Article  CAS  PubMed  Google Scholar 

  56. Foster CE, Kramer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA (2012) Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. J Am Chem Soc 134:7553–7557

    Article  CAS  PubMed  Google Scholar 

  57. Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131:14979–14989

    Article  CAS  PubMed  Google Scholar 

  58. Peters V, Janssen PH, Conrad R (1999) Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr Microbiol 38:285–289

    Article  CAS  Google Scholar 

  59. Schmidt S, Biegel E, Müller V (2009) The ins and outs of Na+ bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787:691–696

    Article  CAS  PubMed  Google Scholar 

  60. Biegel E, Schmidt S, González JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634

    Article  CAS  PubMed  Google Scholar 

  61. Hess V, Schuchmann K, Müller V (2013) The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–31502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Westphal L, Wiechmann A, Baker J, Minton NP, Müller V (2018) The Rnf complex is an energy coupled transhydrogenase essential to reversibly link cellular NADH and ferredoxin pools in the acetogen Acetobacterium woodii. J Bacteriol 200:e00357-e318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fritz M, Müller V (2007) An intermediate step in the evolution of ATPases - the F1FO-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. FEBS J 274:3421–3428

    Article  CAS  PubMed  Google Scholar 

  64. Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Müller DJ, Meier T, Müller V (2008) An intermediate step in the evolution of ATPases: a hybrid F1FO rotor in a bacterial Na+ F1FO ATP synthase. FEBS J 275:1999–2007

    Article  CAS  PubMed  Google Scholar 

  65. Amao Y (2008) Photoinduced biohydrogen production from biomass. Int J Mol Sci 9:1156–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ergal I, Fuchs W, Hasibar B, Thallinger B, Bochmann G, Rittmann SKMR (2018) The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv 36:2165–2186

    Article  CAS  PubMed  Google Scholar 

  67. Kottenhahn P, Schuchmann K, Müller V (2018) Efficient whole cell biocatalyst for formate-based hydrogen production. Biotechnol Biofuels 11:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rittmann SK, Lee HS, Lim JK, Kim TW, Lee JH, Kang SG (2015) One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity. Biotechnol Adv 33:165–177

    Article  CAS  PubMed  Google Scholar 

  70. Weghoff MC, Müller V (2016) CO metabolism in the thermophilic acetogen Thermoanaerobacter kivui. Appl Environ Microbiol 82:2312–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bertsch J, Müller V (2015a) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81:5949–5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bertsch J, Müller V (2015b) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405

    Article  CAS  PubMed  Google Scholar 

  74. Schwarz FM, Müller V (2020) Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol Biofuels 13:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung HC, Lee SH, Lee SM, An YJ, Lee JH, Lee HS, Kang SG (2017) Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate. Sci Rep 7:6124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lim JK, Bae SS, Kim TW, Lee JH, Lee HS, Kang SG (2012) Thermodynamics of formate-oxidizing metabolism and implications for H2 production. Appl Environ Microbiol 78:7393–7397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, Kim SJ, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee JH, Kang SG (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355

    Article  CAS  PubMed  Google Scholar 

  78. Lim JK, Mayer F, Kang SG, Müller V (2014) Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon. Proc Natl Acad Sci USA 111:11497–11502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heffernan JK, Valgepea K, de Souza Pinto Lemgruber R, Casini I, Plan M, Tappel R, Simpson SD, Köpke M, Nielsen LK, Marcellin E (2020) Enhancing CO2-valorization using Clostridium autoethanogenum for sustainable fuel and chemicals production. Front Bioeng Biotechnol 204

    Google Scholar 

  80. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    Article  CAS  Google Scholar 

  81. Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127

    Article  CAS  PubMed  Google Scholar 

  83. Mock J, Zheng Y, Müller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197:2965–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol-Current state and prospects. Biotechnol Adv 27:715–725

    Article  CAS  PubMed  Google Scholar 

  85. Xiu Z-L, Zeng A-P (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Article  CAS  PubMed  Google Scholar 

  86. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: Mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55

    Article  CAS  PubMed  Google Scholar 

  87. Köpke M, Gerth ML, Maddock DJ, Müller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80:3394–3403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresour Technol 190:114–121

    Article  CAS  PubMed  Google Scholar 

  90. Liou JS, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    Article  CAS  PubMed  Google Scholar 

  91. Shen GJ, Shieh JS, Grethlein AJ, Jain MK, Zeikus JG (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microbiol Biotechnol 51:827–832

    Article  CAS  Google Scholar 

  92. Maddipati P, Atiyeh HK, Bellmer DD, Huhnke RL (2011) Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour Technol 102:6494–6501

    Article  CAS  PubMed  Google Scholar 

  93. Chang IS, Kim BH, Kim DH, Lovitt RW, Sung HC (1999) Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium. J Biosci Bioeng 88:682–685

    Article  CAS  PubMed  Google Scholar 

  94. Dürre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363

    Google Scholar 

  95. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    Article  CAS  PubMed  Google Scholar 

  96. Jeong J, Bertsch J, Hess V, Choi S, Choi IG, Chang IS, Müller V (2015) Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612. Appl Environ Microbiol 81:4782–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fernández Naveira Á, Veiga M, Kennes C (2017) H-B-E (Hexanol-Butanol-Ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotechnol 92:712–731

    Article  CAS  Google Scholar 

  98. Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303

    Article  PubMed  CAS  Google Scholar 

  99. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464

    Article  CAS  PubMed  Google Scholar 

  100. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  CAS  PubMed  Google Scholar 

  101. Strätz M, Sauer U, Kuhn A, Dürre P (1994) Plasmid transfer into the homoacetogen Acetobacterium woodii by electroporation and conjugation. Appl Environ Microbiol 60:1033–1037

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    Article  CAS  PubMed  Google Scholar 

  103. Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shin J, Kang S, Song Y, Jin S, Lee JS, Lee J-K, Kim DR, Kim SC, Cho S, Cho B-K (2019) Genome engineering of Eubacterium limosum using expanded genetic tools and the CRISPR-Cas9 system. ACS Synth Biol 8:2059–2068

    Article  CAS  PubMed  Google Scholar 

  105. Basen M, Geiger I, Henke L, Müller V (2018) A genetic system for the thermophilic acetogenic bacterium Thermoanaerobacter kivui. Appl Environ Microbiol 84:e02210-02217

    PubMed  PubMed Central  Google Scholar 

  106. Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80:2410–2416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Fluchter S, Oztürk H, Blumke W, May A, Fischer RJ, Bahl H, Dürre P (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47

    Article  CAS  PubMed  Google Scholar 

  108. Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat Commun 7:12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mozejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol Res 192:271–282

    Article  CAS  PubMed  Google Scholar 

  110. Woolston BM, Emerson DF, Currie DH, Stephanopoulos G (2018) Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng 48:243–253

    Article  CAS  PubMed  Google Scholar 

  111. de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E (2019) Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 53:14–23

    Google Scholar 

  112. Flüchter S, Follonier S, Schiel-Bengelsdorf B, Bengelsdorf FR, Zinn M, Dürre P (2019) Anaerobic production of poly(3-hydroxybutyrate) and its precursor 3-hydroxybutyrate from synthesis gas by autotrophic clostridia. Biomacromol 20:3271–3282

    Article  CAS  Google Scholar 

  113. Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70:615–619

    Article  CAS  Google Scholar 

  114. Lynd LH, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lynd LH, Zeikus JG (1983) Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zahn JA, Saxena J (2011) Novel ethanologenic species Clostridium coskatii. US Patent 8143037

    Google Scholar 

  117. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology Group-I. Int J Syst Bact 43:232–236

    Article  CAS  Google Scholar 

  118. Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2-dependent and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Litty, D., Müller, V. (2021). Acetogenic Bacteria for Biotechnological Applications. In: Moura, J.J.G., Moura, I., Maia, L.B. (eds) Enzymes for Solving Humankind's Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-58315-6_4

Download citation

Publish with us

Policies and ethics