Skip to main content

Bioactive Compounds of Goosefoot (Genus Chenopodium)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Abstract

The biologically active compounds isolated from Chenopodium species are reviewed. These include compounds of diverse chemical nature: polysaccharides, lectins, amines and amides, phenolics and flavonoids, saponins, sterols, monoterpenes, and essential oils. The data for the biological activity of more than 70 compounds isolated or detected in goosefoot species are found in the literature. A wide range of pharmacological activities of chenopods: antimicrobial, antifungal, antiparasitic, antioxidant, hepatoprotective, neuroprotective, anti-α-glucosidase, prolipase, antineoplastic, anti-inflammatory, hemolytic, wound healing, sedative, and analgesic that appeared in the literature are discussed. The research found in literature was done mainly on C. album, C. ambrosioides, C. bonus-henricus, C. botrys, and C. quinoa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3 T3-L1:

Mouse fibroblast cells

6-OHDA:

6-Hydroxydopamine

ABTS+:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt

AChE:

Acetylcholinesterase

BALB/c :

Albino immune-deficient inbred mouse strain

BChE:

Butyrylcholinesterase

BHT:

Butylated hydroxytoluene

BV-173:

Human B-cell precursor leukemia cell line

C/EBPα:

Cytosine-cytosine-adenosine-adenosine-thymidine-enhancer-binding protein alpha

Caco-2:

Human colorectal adenocarcinoma cell line

CCl4:

Carbon tetrachloride

CCRF-CEM:

Human acute T-lymphoblastic leukemia cell line

DNA:

Deoxyribonucleic acid

DPI:

Days post-injury

DPPH+:

2,2-Diphenyl-1-picrylhydrazyl

ED50:

Median effective dose

EO:

Essential oil

ESR:

Electron paramagnetic resonance

EtOAc:

Ethyl acetate

FRAP:

Ferric reducing/antioxidant power

GSH:

Glutathione

HeLa:

Human cervical adenocarcinoma cell line

HepG2:

Human liver cancer cell line

HL-60:

Human acute promyelocytic leukemia cell line

Hoechst33258:

Pentahydrate (bis-benzimide) – 10 mg/mL solution in water

IC50:

Half maximal inhibitory concentration

IFN-α:

Interferon-alpha

IFN-γ:

Interferon-gamma

IgM:

Immunoglobulin M

IL-6:

Interleukin 6

Jurkat E6-1 :

Human acute T-cell leukemia cell line

K-562 :

Human chronic myelogenous leukemia cell line

L02:

Human normal liver cells

LC-MS:

Liquid chromatography coupled with mass spectrometry

LDH:

Lactate dehydrogenase

LPLAFT:

Lipid peroxidation of linoleic acid by ferric thiocyanate

LPS:

Lipopolysaccharide

LYSO:

Lysozyme

MBC:

Minimum bactericidal concentration

MCF 10A:

Human normal breast epithelial cell line

MCF-7:

Human breast cancer cell line

MDA-MB-231:

Human mammary gland/breast adenocarcinoma cell line

MIC:

Minimum inhibitory concentration

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NO:

Nitric oxide

PHA/PMA :

Phytohemagglutinin/phorbol 12-myristate 13-acetate

PPARγ:

Peroxisome proliferator-activated receptor gamma

RAW264.7:

Abelson murine leukemia virus-transformed macrophage

ROS:

Reactive oxygen species

SC50:

Half maximal scavenge capacity

SKW-3:

Human T-cell leukemia cell line

SMMC 7721:

Human liver cancer cell line

SREBP-1c:

Sterol regulatory element-binding protein 1c

TNF-α:

Tumor necrosis factor-alpha

TPA:

12-O-tetradecanoylphorbol-13-acetate

UPLC/Q-TOF-MS :

Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry

WHO:

World Health Organization

References

  1. Gilani AH, Atta-ur-Rahman (2005) Trends in ethnopharmacology. J Ethnopharmacol 100:43–49

    Article  PubMed  Google Scholar 

  2. Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin/Heidelberg

    Google Scholar 

  3. Bhargava A, Rana TS, Shukla S, Ohri D (2005) Seed protein electrophoresis of some cultivated and wild species of Chenopodium. Biol Plant 49:505–511

    Article  CAS  Google Scholar 

  4. Vilcacundo R, Hernández-Ledesma B (2017) Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr Opin Food Sci 14:1–6

    Article  Google Scholar 

  5. Rastrelli L, De Simone F, Schettino O, Dini A (1996) Constituents of Chenopodium pallidicaule (Canihua) seeds: isolation and characterization of new triterpene saponins. J Agric Food Chem 44:3528–3533

    Article  CAS  Google Scholar 

  6. Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol 100:109–123

    Article  CAS  PubMed  Google Scholar 

  7. Kokanova-Nedialkova Z, Nedialkov PT, Nikolov SD (2009) The genus Chenopodium: phytochemistry, ethnopharmacology, and pharmacology. Pharmacogn Rev 3:280–306

    CAS  Google Scholar 

  8. Poonia A, Upadhayay A (2015) Chenopodium album Linn: review of nutritive value and biological properties. J Food Sci Technol 52:3977–3985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barros L, Pereira E, Calhelha RC, Dueñas M, Carvalho AM, Santos-Buelga C, Ferreira IC (2013) Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodiumambrosioides L. J Funct Foods 5:1732–1740

    Article  CAS  Google Scholar 

  10. Kokanova-Nedialkova Z, Nedialkov P, Kondeva-Burdina M, Simeonova R, Tzankova V, Aluani D (2017) Chenopodium bonus-henricus L. – a source of hepatoprotective flavonoids. Fitoterapia 118:13–20

    Article  CAS  PubMed  Google Scholar 

  11. Sayyedrostami T, Pournaghi P, Vosta-Kalaee SE, Zangeneh MM (2018) Evaluation of the wound healing activity of Chenopodiumbotrys leaves essential oil in rats (a short-term study). J Essent Oil Bear Plants 21:164–174

    Article  CAS  Google Scholar 

  12. Cordeiro LMC, Reinhardt VDF, Baggio CH, Werner MFDP, Burci LM, Sassaki GL, Iacomini M (2012) Arabinan and arabinan-rich pectic polysaccharides from quinoa (Chenopodium quinoa) seeds: structure and gastroprotective activity. Food Chem 130:937–944

    Article  CAS  Google Scholar 

  13. Hu Y, Zhang J, Zou L, Fu C, Li P, Zhao G (2017) Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int J Biol Macromol 99:622–629

    Article  CAS  PubMed  Google Scholar 

  14. Fan S, Li J, Bai B (2019) Purification, structural elucidation and in vivo immunity-enhancing activity of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 83:2334–2344

    Article  CAS  PubMed  Google Scholar 

  15. Pompeu DG, Mattioli MA, de Azambuja Ribeiro RIM, Gonçalves DB, de Magalhães JT, Marangoni S, da Silva JA, Granjeiro PA (2015) Purification, partial characterization and antimicrobial activity of lectin from Chenopodium quinoa seeds. Food Sci Technol (Campinas) 35:696–703

    Article  Google Scholar 

  16. Song K, Zhang J, Zhang P, Wang H-Q, Liu C, Li B-M, Kang J, Chen R-Y (2015) Five new bioactive compounds from Chenopodium ambrosioides. J Asian Nat Prod Res 17:482–490

    Article  CAS  PubMed  Google Scholar 

  17. Chyau C-C, Chu C-C, Chen S-Y, Duh P-D (2018) The inhibitory effects of Djulis (Chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes. Molecules 23:1780

    Article  PubMed Central  CAS  Google Scholar 

  18. Nahar L, Sarker SD (2005) Chenoalbuside: an antioxidant phenolic glycoside from the seeds of Chenopodium album L. (Chenopodiaceae). Braz J Pharmacog 15(4):279–282

    Article  CAS  Google Scholar 

  19. Zhu N, Sheng S, Li D, Lavoie EJ, Karwe MV, Rosen RT, Ho C-T (2001) Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd.). J Food Lipids 8:37–44

    Article  CAS  Google Scholar 

  20. Ghareeb MA, Saad AM, Abdou AM, Refahy LA-G, Ahmed WS (2016) A new kaempferol glycoside with antioxidant activity from Chenopodium ambrosioides growing in Egypt. Orient J Chem 32:3053–3061

    Article  CAS  Google Scholar 

  21. Kokanova-Nedialkova Z, Bücherl D, Nikolov S, Heilmann J, Nedialkov PT (2011) Flavonol glycosides from Chenopodium foliosum Asch. Phytochem Lett 4:367–371

    Article  CAS  Google Scholar 

  22. Kokanova-Nedialkova Z, Kondeva-Burdina M, Zheleva-Dimitrova D, Bücherl D, Nikolov S, Heilmann J, Nedialkov PT (2014) A new acylated flavonol glycoside from Chenopodiumfoliosum. Rec Nat Prod 8:401–406

    CAS  Google Scholar 

  23. Kokanova-Nedialkova Z, Nedialkov PT, Nikolov SD (2014) Pharmacognostic investigations of the aerial parts of Chenopodium foliosum Asch. And radical-scavenging activities of five flavonoids isolated from methanol extract of the plant. Pharm J 6:43–48

    CAS  Google Scholar 

  24. Kokanova-Nedialkova Z, Kondeva-Burdina M, Zheleva-Dimitrova D, Tzankova V, Nikolov S, Heilmann J, Nedialkov PT (2015) 6-Methoxyflavonol glycosides with in vitro hepatoprotective activity from Chenopodium bonus-henricus roots. Nat Prod Commun 10:1377–1380

    PubMed  Google Scholar 

  25. Kokanova-Nedialkova Z, Nedialkov P (2017) Antioxidant properties of 6-methoxyflavonol glycosides from the aerial parts of Chenopodium bonus-henricus L. Bulg Chem Commun 49(SI D):253–258

    Google Scholar 

  26. Gohar AA, Elmazar MM (1997) Isolation of hypotensive flavonoids from Chenopodium species growing in Egypt. Phytother Res 11(8):564–567

    Article  CAS  Google Scholar 

  27. Kokanova-Nedialkova Z, Kondeva-Burdina M, Nedialkov PT (2020, in press) Neuroprotective, anti-α-glucosidase and prolipase active flavonoids from Good King Henry (Chenopodium bonus-henricus L.) Nat Prod Res. https://doi.org/10.1080/14786419.2020.1784172

  28. Kuljanabhagavad T, Wink M (2009) Biological activities and chemistry of saponins from Chenopodium quinoa Willd. Phytochem Rev 8:473–490

    Article  CAS  Google Scholar 

  29. El Hazzam K, Hafsa J, Sobeh M, Mhada M, Taourirte M, Kacimi KEL, Yasri A (2020) An insight into saponins from Quinoa (Chenopodium quinoa Willd): a review. Molecules 25:1059

    Article  PubMed Central  CAS  Google Scholar 

  30. Woldemichael GM, Wink M (2001) Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agric Food Chem 49:2327–2332

    Article  CAS  PubMed  Google Scholar 

  31. Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P (2020) Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. Husks against foodborne pathogenic bacteria. Ind Crops Prod 149:112350

    Article  CAS  Google Scholar 

  32. Kuljanabhagavad T, Thongphasuk P, Chamulitrat W, Wink M (2008) Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry 69:1919–1926

    Article  CAS  PubMed  Google Scholar 

  33. Nedialkov PT, Kokanova-Nedialkova Z, Buc̈herl D, Momekov G, Heilmann J, Nikolov S (2012) 30-Normedicagenic acid glycosides from Chenopodium foliosum. Nat Prod Commun 7:1419–1422

    CAS  PubMed  Google Scholar 

  34. Chakraborty D, Jain CK, Maity A, Ghosh S, Choudhury SR, Jha T, Majumder HK, Mondal NB (2016) Chenopodium album metabolites act as dual topoisomerase inhibitors and induce apoptosis in the MCF7 cell line. Med Chem Commun 7:837–844

    Article  CAS  Google Scholar 

  35. Kokanova-Nedialkova Z, Nedialkov PT, Momekov G (2019) Saponins from the roots of Chenopodium bonus-henricus L. Nat Prod Res 33:2024–2031

    Article  CAS  PubMed  Google Scholar 

  36. Kokanova-Nedialkova Z, Nedialkov P, Kondeva-Burdina M, Simeonova R (2019) Hepatoprotective activity of a purified methanol extract and saponins from the roots of Chenopodium bonus-henricus L. Z Naturforsch C J Biosci 74:329–337

    Article  CAS  PubMed  Google Scholar 

  37. Verza SG, Silveira F, Cibulski S, Kaiser S, Ferreira F, Gosmann G, Roehe PM, Ortega GG (2012) Immunoadjuvant activity, toxicity assays, and determination by UPLC/Q-TOF-MS of triterpenic saponins from Chenopodium quinoa seeds. J Agric Food Chem 60:3113–3118

    Article  CAS  PubMed  Google Scholar 

  38. Yao Y, Yang X, Shi Z, Ren G (2014) Anti-inflammatory activity of Saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J Food Sci 79:H1018–H1023

    Article  CAS  PubMed  Google Scholar 

  39. Nsimba RY, Kikuzaki H, Konishi Y (2008) Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress. J Biochem Mol Toxicol 22:240–250

    Article  CAS  PubMed  Google Scholar 

  40. Afaq S, Fatima I, Inamullah F, Khan S, Kazmi MH, Malik A, Tareen RB, Ali MS, Farhad MZ, Abbas T (2018) Chenisterol, a new antimicrobial steroid from Chenopodiumbadachschanicum. Chem Nat Compd 54:917–920

    Article  CAS  Google Scholar 

  41. Maksimovic ZA, Dordevic S, Mraovic M (2005) Antimicrobial activity of Chenopodium botrys essential oil. Fitoterapia 76:112–114

    Article  CAS  PubMed  Google Scholar 

  42. Lyubenova ML, Ganeva YA, Chipilska LT, Hadjieva PD, Chanev CD (2006) Biological active components of Chenopodium botrys L. phytomass. J Balkan Ecol 9:289–295

    CAS  Google Scholar 

  43. El-Sayed AM, Al-Yahya MA, Hassan MMA (1989) Chemical composition and antimicrobial activity of the essential oil of Chenopodium botrys growing in Saudi Arabia. Int J Crude Drug Res 27:185–188

    Article  CAS  Google Scholar 

  44. Mahboubi M, Bidgoli FG, Farzin N (2011) Chemical composition and antimicrobial activity of Chenopodium botrys L. essential oil. J Essent Oil Bear Plants 14:498–503

    Article  CAS  Google Scholar 

  45. Foroughi A, Pournaghi P, Najafi F, Zangeneh MM, Zangeneh A, Moradi R (2016) Chemical composition and antibacterial properties of Chenopodium botrys L. essential oil. Int J Pharmacogn Phytochem Res 8:1881–1885

    Google Scholar 

  46. Harraz FM, Hammoda HM, El Ghazouly MG, Farag MA, El-Aswad AF, Bassam SM (2015) Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides. Nat Prod Res 29:879–882

    Article  CAS  PubMed  Google Scholar 

  47. Santiago JA, Cardoso MG, Batista LR, de Castro EM, Teixeira ML, Pires MF (2016) Essential oil from Chenopodium ambrosioides L.: secretory structures, antibacterial and antioxidant activities. Acta Sci Biol Sci 38:139–147

    Article  CAS  Google Scholar 

  48. Shi M, Xu M, Zhang Y, Zhong Y (2016) Composition and antibacterial activity of the essential oil of Chenopodium foetidum. Chem Nat Compd 52:930–931

    Article  CAS  Google Scholar 

  49. Kumar R, Mishra AK, Dubey NK, Tripathi YB (2007) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 115:159–164

    Article  CAS  PubMed  Google Scholar 

  50. Jardim CM, Jham GN, Dhingra OD, Freire MM (2008) Composition and antifungal activity of the essential oil of the Brazillian Chenopodium ambrosioides L. J Chem Ecol 34:1213–1218

    Article  CAS  PubMed  Google Scholar 

  51. Chekem MS, Lunga PK, Tamokou JD, Kuiate JR, Tane P, Vilarem G, Cerny M (2010) Antifungal properties of Chenopodium ambrosioides essential oil against Candida species. Pharmaceuticals 3:2900–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prasad CS, Shukla R, Kumar A, Dubey NK (2010) In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 53:123–129

    Article  CAS  PubMed  Google Scholar 

  53. Tzakou O, Pizzimenti A, Pizzimenti FC, Sdrafkakis V, Galati EM (2006) Composition and antimicrobial activity of Chenopodium botrys L. Essential oil from Greece. J Essent Oil Res 19:292–294

    Article  Google Scholar 

  54. Monzote L, Sariego I, Montalvo AM, Garrido N, Scull R, Abreu J (2004) Propiedadesantiprotozoarias de aceitesesencialesextraidos de plantascubanas. Rev Cubana Med Trop 56:230–233

    Google Scholar 

  55. Monzote L, Montalvo AM, Almanonni S, Scull R, Miranda M, Abreu J (2006) Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52:130–136

    Article  CAS  PubMed  Google Scholar 

  56. Monzote L, Montalvo AM, Scull R, Miranda M, Abreu J (2007) Activity, toxicity and analysis of resistance of essential oil from Chenopodium ambrosioides after intraperitoneal, oral and intralesional administration in BALB/c mice infected with Leishmania amazonensis: a preliminary study. Biomed Pharmacother 61:148–153

    Article  CAS  PubMed  Google Scholar 

  57. Monzote L, Montalvo AM, Scull R, Miranda M, Abreu J (2007) Combined effect of the essential oil from Chenopodium ambrosioides and antileishmanial drugs on promastigotes of Leishmaniaamazonensis. Rev Inst Med Trop S Paulo 49:257–260

    Article  PubMed  Google Scholar 

  58. Monzote L, Garcia M, Montalvo AM, Linares R, Scull R (2009) Effect of oral treatment with the essential oil from Chenopodium ambrosioides against cutaneous leishmaniasis in BALB/c mice, caused by Leishmania amazonensis. Complement Med Res 16:334–338

    Article  Google Scholar 

  59. Monzote L, Garcia M, Montalvo AM, Scull R, Miranda M, Abreu J (2007) In vitro activity of an essential oil against Leishmania donovani. Phytother Res 21:1055–1058

    Article  CAS  PubMed  Google Scholar 

  60. Monzote L, García M, Pastor J, Gil L, Scull R, Maes L, Cos P, Gille L (2014) Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol 136:20–26

    Article  CAS  PubMed  Google Scholar 

  61. Pollack Y, Segal R, Golenser J (1990) The effect of ascaridole on the in vitro development of Plasmodium falciparum. Parasitol Res 76:570–572

    Article  CAS  PubMed  Google Scholar 

  62. Monteiro JNM, Archanjo AB, Passos GP, Costa AV, Porfrio LC, Martins IVF (2017) Chenopodium ambrosioides L. essential oil and ethanol extract on control of canine Ancylostoma spp. Semina Cienc Agrar 38:1947–1953

    Article  Google Scholar 

  63. Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, Aoki T (2002) Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod 65:509–512

    Article  CAS  PubMed  Google Scholar 

  64. Wu JL, Ma DW, Wang YN, Zhang H, He B, Li Q, Zou ZY, Feng J (2013) Cytotoxicity of essential oil of Chenopodium ambrosioides L against human breast cancer MCF-7 cells. Trop J Pharm Res 12:929–933

    Google Scholar 

  65. Wang YN, Wu JL, Ma DW, Jiao L, Zhang DY (2015) Anticancer effects of Chenopodium ambrosiodes L. essential oil on human breast cancer MCF-7 cells in vitro. Trop J Pharm Res 14:1813–1820

    Article  CAS  Google Scholar 

  66. Wang Y, Zhu X, Ma H, Du R, Li D, Ma D (2016) Essential oil of Chenopodium ambrosioides induced caspase-dependent apoptosis in SMMC-7721 cells. Zhong Yao Cai 39:1124–1128

    PubMed  Google Scholar 

  67. Efferth T, Olbrich A, Sauerbrey A, Ross DD, Gebhart E, Neugebauer M (2002) Activity of ascaridol from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells. Anticancer Res 22:4221–4224

    CAS  PubMed  Google Scholar 

  68. Ozer MS, Sarikurkcu C, Ceylan O, Akdeniz I, Tepe B (2017) A comprehensive study on chemical composition, antioxidant and enzyme inhibition activities of the essential oils of Chenopodium botrys collected from three different parts of Turkey. Ind Crop Prod 107:326–333

    Article  CAS  Google Scholar 

  69. Usman LA, Hamid AA, Muhammad NO, Olawore NO, Edewor TI, Saliu BK (2010) Chemical constituents and anti-inflammatory activity of leaf essential oil of Nigerian grown Chenopodium album L. Excli J 9:181–186

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou S-Q, Li Y-H, Huang X-Z, Li R, Lu H, Tian K, Ruan R-S, Li Y-K (2017) Polyol monoterpenes isolated from Chenopodium ambrosioides. Nat Prod Res 31:2467–2472

    Article  CAS  PubMed  Google Scholar 

  71. Okuyama E, Umeyama K, Saito Y, Yamazaki M, Satake M (1993) Ascaridole as a pharmacologically active principle of Paico, a medicinal Peruvian plant. Chem Pharm Bull 41:1309–1311

    Article  CAS  Google Scholar 

  72. Monzote L, Stamberg W, Staniek K, Gille L (2009) Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol Appl Pharmacol 240:337–347

    Article  CAS  PubMed  Google Scholar 

  73. Zhu WX, Zhao K, Chu SS, Liu ZL (2012) Evaluation of essential oil and its three main active ingredients of Chinese Chenopodium ambrosioides (family: Chenopodiaceae) against Blattella germanica. J Arthropod Borne Dis 6:90–97

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskev T. Nedialkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nedialkov, P.T., Kokanova-Nedialkova, Z. (2021). Bioactive Compounds of Goosefoot (Genus Chenopodium). In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44578-2_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44578-2

  • Online ISBN: 978-3-030-44578-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics