Skip to main content

Trophic Networks and Ecosystem Functioning

  • Chapter
  • First Online:
Antarctic Seaweeds

Abstract

The geographic isolation of the Antarctic continent offers an interesting opportunity to quantify and qualify the actual ecological conditions and the most sensitive components from an ecosystem perspective. Antarctic coastal ecosystems are under severe stress as a consequence of climate change, which could facilitate biological invasions, reduced growth of macroalgal species, and local extinctions. The application of network analysis, representing the interactions among multiple species, allows us to quantify macroscopic (emergent) system properties, to assess overall health, to predict the propagation of direct and indirect effects, and to identify keystone species complexes within these complex ecological systems. Three theoretical frameworks are used here for this analysis: (1) ecological network analysis (ENA) considering thermodynamics and information theory (providing measures such as Ascendency), (2) semiquantitative (qualitative) mathematics based on the structure and local stability of community matrices (Loop Analysis), and (3) topological studies on interaction networks considering central node sets and defining keystone species complexes (KSCs).

Therefore, the integration of ecosystemic properties and keystone species complexes could help us to facilitate the design and assessment of conservation and monitoring measures, especially when the Antarctic coastal marine ecosystems are being severely stressed. The protection of the Antarctic environment – as a whole – not only should be focused on biological populations and communities but also should consider changes in macroscopic properties, the propagation of direct and indirect influences in the networks, and keystone species complexes, which emerge using networks of interacting and coexisting species (or functional groups as system components).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen KR (1971) Ralation between production and biomass. J Fish Res Board Can 28:1573–1581

    Google Scholar 

  • Allesina S, Bodini A (2004) Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. J Theor Biol 230:351–358

    Article  PubMed  Google Scholar 

  • Baird D, Ulanowicz RR (1993) Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Mar Ecol Prog Ser 99:221–237

    Article  Google Scholar 

  • Baird D, McGlade JJ, Ulanowicz RE (1991) The comparative ecology of six marine ecosystems. Philos Trans R Soc Biol Sci 333:15–29

    Article  Google Scholar 

  • Barua M (2011) Mobilizing metaphors: the popular use of keystone, flagship and umbrella species concepts. Biodivers Conserv 20:1427–1440

    Article  Google Scholar 

  • Benedek Z, Jordán F, Báldi A (2007) Topological keystone species complexes in ecological interaction networks. Community Ecol 8:1–7

    Article  Google Scholar 

  • Bond W (2001) Keystone species – hunting the shark? Science 292:63–64

    Article  CAS  PubMed  Google Scholar 

  • Borgatti SP (2003a) The key player problem. In: Breiger R, Carley Pattison P (eds) Dynamic social network modeling and analysis: Workshop Summary and Papers. Committee on Human Factors, National Research Council. National Academies Press, Washington, DC, pp 241–252

    Google Scholar 

  • Borgatti SP (ed) (2003b) KeyPlayer. Analytic technologies. Harvard University Press, Boston

    Google Scholar 

  • Briand F, McCauley E (1978) Cybernetic mechanisms in lake plankton systems: how to control undesirable algae. Nature 273:228–230

    Article  Google Scholar 

  • Christensen V (1995) Ecosystem maturity–towards quantification. Ecol Model 77:3–32

    Article  Google Scholar 

  • Christensen V, Pauly D (1992) Ecopath II: a software for balancing steady–state ecosystem models and calculating network characteristics. Ecol Model 61:169–185

    Article  Google Scholar 

  • Christensen V, Pauly D (1993) Trophic models in aquatic ecosystem. ICLARM Conf Proc 26:390

    Google Scholar 

  • Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172:109–139

    Article  Google Scholar 

  • Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82

    Article  Google Scholar 

  • Cornejo-Donoso J, Antezana T (2008) Preliminary trophic model of the Antarctic Peninsula ecosystem (sub-area CCAMLR 48.1). Ecol Model 218:1–17

    Article  Google Scholar 

  • Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33:105–115

    Article  Google Scholar 

  • Daily GC, Ehrlich PR, Haddad NM (1993) Double keystone bird in a keystone species complex. PNAS 90:592–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darmbacher J, Guaghan D, Rochet M, Rossignol P, Trenkel V (2009) Qualitative modelling and indicators of exploited ecosystems. Fish Fish 10:305–322

    Article  Google Scholar 

  • Duggins DO, Simenstad CA, Estes JA (1989) Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:101–232

    Article  Google Scholar 

  • Epstein S (1997) Microbial food web in marine sediments: I. Trophic interactions and grazing rates in two tidal flat communities. Microb Ecol 34:188–198

    Article  CAS  PubMed  Google Scholar 

  • Estes JA, Tinker MT, Williams TM, Doak DF (1998) Killer whale predation on sea otters linking oceanic and near shore ecosystems. Science 282:473–476

    Article  CAS  PubMed  Google Scholar 

  • Fedor A, Vasas V (2009) The robustness of keystone indices in food webs. J Theor Biol 260:372–378

    Article  PubMed  Google Scholar 

  • Findlay R, White D (1983) The effects of feeding by the sand dollar Mellita quinquiesperforata (Leske) on the benthic microbial community. J Exp Mar Biol Ecol 72:25–41

    Google Scholar 

  • Gaymer C, Himmelman JH (2008) A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in subtidal zone. Mar Ecol Prog Ser 370:143–153

    Article  Google Scholar 

  • Giacaman-Smith J, Neira S, Arancibia H (2016) Community structure and trophic interactions in a coastal management and exploitation area for benthic resources in central Chile. Ocean Coast Manag 119:155–163

    Article  Google Scholar 

  • Gili JM, Coma R, Orejas C, López-González PJ, Zavala M (2001) Are Antarctic suspension feeding communities different from those elsewhere in the world? Polar Biol 24:473–485

    Article  Google Scholar 

  • Grossmann S, Reichardt W (1991) Impact of Arenicola marina on bacteria in intertidal sediments. Mar Ecol Prog Ser 77:85–93

    Article  Google Scholar 

  • Harary F (1961) Who eats whom? Gen Syst 6:41–44

    Google Scholar 

  • Hawkins S (2004) Scaling up: the role of species and habitat patches in functioning of coastal ecosystems. Aquat Conserv Mar Freshwat Ecosyst 14:217–219

    Google Scholar 

  • Hermosillo-Núñez BB, Ortiz M, Rodríguez-Zaragoza FA (2018) Keystone species complexes in kelp forest ecosystems along the northern Chilean coast (SE Pacific): improving multispecies management strategies. Ecol Indic 93:1101–1111

    Article  Google Scholar 

  • Heymans J, Baird D (2000) A carbon flow model and network analysis of the northern Benguela upwelling system, Namibia. Ecol Model 126:9–32

    Article  CAS  Google Scholar 

  • Heymans J, Coll M, Link JS, Mackinson S, Steenbeek J, Walters C, Christensen V (2016) Best practice in Ecopath with Ecosim food–web models for ecosystem–based management. Ecol Model 331:173–184

    Article  Google Scholar 

  • Hulot F, Lacroix G, Lescher-Moutoué F, Loreau M (2000) Functional diversity governs ecosystem response to nutrient enrichment. Nature 405:340–344

    Article  CAS  PubMed  Google Scholar 

  • Huovinen P, Gómez I (2013) Photosynthetic characteristics and UV stress tolerance of Antarctic seaweeds along the depth gradient. Polar Biol 36:1319–1332

    Article  Google Scholar 

  • Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K (2005) Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol Prog Ser 287:251–253

    Article  Google Scholar 

  • Jones C, Lawton J, Shachak M (1994) Organism as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jordán F (2001) Trophic fields. Community Ecol 2:181–185

    Article  Google Scholar 

  • Jordán F, Scheuring I (2004) Network ecology: topological constraints on ecosystem dynamics. Phys Life Rev 1:139–172

    Article  Google Scholar 

  • Jordán F, Takács-Sánta A, Molnár I (1999) A reliability theoretical quest for keystones. Oikos 86:453–462

    Article  Google Scholar 

  • Jordán F, Benedek Z, Podani J (2007) Quantifying positional importance in food webs: a comparison of centrality indices. Ecol Model 205:270–275

    Article  Google Scholar 

  • Jordán F, Okey T, Bauer B, Libralato S (2008) Identifying important species: linking structure and function in ecological networks. Ecol Model 216:75–80

    Article  Google Scholar 

  • Jordán F, Pereira J, Ortiz M (2019) Mesoscale network properties in ecological system models. Curr Opin Syst Biol 13:122–128

    Article  Google Scholar 

  • Kaehler S, Pakhomov EA, McQuaid CD (2000) Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar Ecol Prog Ser 208:13–20

    Article  Google Scholar 

  • Kaufman AG, Borrett SR (2010) Ecosystem network analysis indicators are generally robust to parameter uncertainty in a phosphorus model of Lake Sidney Lanier, USA. Ecol Model 221:1230–1238

    Article  CAS  Google Scholar 

  • King JC (1994) Recent climate variability in the vicinity of the Antarctic Peninsula. Int J Climatol 14:357–369

    Article  Google Scholar 

  • Lane P (1986) Symmetry, change, perturbation, and observing mode in natural communities. Ecology 67:223–239

    Article  Google Scholar 

  • Lane P, Blouin A (1985) Qualitative analysis of the pelagic food webs of three acid impacted lakes. Int Rev Ges Hydrobiol 70:203–220

    Article  Google Scholar 

  • Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  • Levins R (ed) (1968) Evolution in changing environments. Princeton Monographs Series. Princeton University Press, Princeton

    Google Scholar 

  • Levins R (1974) The qualitative analysis of partially specified systems. Ann NY Acad Sci 231:123–138

    Google Scholar 

  • Levins R (1998a) Qualitative mathematics for understanding, prediction, and intervention in complex ecosystems. In: Raport D, Costanza R, Epstein P, Gaudet C, Levins R (eds) Ecosystem health. Blackwell Science, MA, pp 178–204

    Google Scholar 

  • Levins R (1998b) The internal and external in explanatory theories. Sci Cult 7:557–582

    Article  Google Scholar 

  • Lewontin R, Levins R (2007) Gene, organism, and environment. In: Lewontin R, Levins R (eds) Biology under the influence: dialectical assays on ecology, agriculture, and health. Monthly Review Press, NY, pp 221–234

    Google Scholar 

  • Libralato S, Christensen V, Pauly D (2006) A method for identifying keystone species in food web models. Ecol Model 195:153–171

    Article  Google Scholar 

  • Luczkovich J, Borgatti S, Johnson J, Everett M (2003) Defining and measuring trophic role similarity in food webs using regular equivalence. J Theor Biol 220:303–321

    Article  PubMed  Google Scholar 

  • Menge BA, Berlow EL, Balchette CA, Navarrete SA, Yamada SB (1994) The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol Monogr 64:249–286

    Article  Google Scholar 

  • Mills L, Soulè M, Doak F (1993) The key-stone-species concept in ecology and conservation. Bioscience 43:219–224

    Article  Google Scholar 

  • Mincks S, Smith CR, Jeffreys RM, Sumida PYG (2008) Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by δ13C and δ15N analysis. Deep-Sea Res II 55:2502–2514

    Article  CAS  Google Scholar 

  • Murphy EJ, Watkins J, Trathan P, Reid K, Meredith M, Thorpe S, Johnston N, Clarke A, Tarling G et al (2007) Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philos Trans R Soc Lond B Biol Sci 362:113–148

    Article  CAS  PubMed  Google Scholar 

  • Norkko A, Thrush SF, Cummings VJ, Gibbs MM, Andrew NL, Norkko J, Schwarz A-M (2007) Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88:2810–2820

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Okey T (2004) Shifted community states in four marine ecosystems: some potential mechanisms. PhD thesis, The University of British Columbia, Canada, 173 pp

    Google Scholar 

  • Ortiz M (2008a) Mass balanced and dynamic simulations of trophic models of kelp ecosystems near the Mejillones Peninsula of Northern Chile (SE Pacific): comparative network structure and assessment of harvest strategies. Ecol Model 216:31–46

    Article  Google Scholar 

  • Ortiz M (2008b) The effect of a crab predator (Cancer porteri) on secondary producers versus ecological model predictions in Tongoy Bay (SE Pacific coast): implications to management and fisheries. Aquat Conserv 18:923–929

    Article  Google Scholar 

  • Ortiz M (2010) Dynamical and spatial models of kelp forest of Macrocystis integrifolia and Lessonia trabeculata (SE Pacific) for assessment harvest scenarios: short-term responses. Aquat Conserv 20:494–506

    Article  Google Scholar 

  • Ortiz M, Levins R (2011) Re–stocking practices and illegal fishing in northern Chile (SE Pacific coast): a study case. Oikos 120:1402–1412

    Article  Google Scholar 

  • Ortiz M, Levins R (2017) Self–feedbacks determine the sustainability of human interventions in eco–social complex systems: impacts on biodiversity and ecosystem health. PLoS One 12(4):e0176163. https://doi.org/10.1371/journal.pone.0176163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz M, Wolff M (2002) Trophic models of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies. J Exp Mar Biol Ecol 268:205–235

    Article  Google Scholar 

  • Ortiz M, Avendaño M, Campos L, Berrios F (2009) Spatial and mass balanced trophic models of La Rinconada Marine Reserve (SE Pacific coast), a protected benthic ecosystem: management strategy assessment. Ecol Model 220:3413–3423

    Article  Google Scholar 

  • Ortiz M, Avendaño M, Cantillañez M, Berrios F, Campos L (2010) Trophic mass balanced models and dynamic simulations of benthic communities from La Rinconada Marine Reserve off Northern Chile: network properties and multispecies harvest scenario assessments. Aquat Conserv 20:58–73

    Article  Google Scholar 

  • Ortiz M, Levins R, Campos L, Berrios F, Campos F, Jordán F, Hermosillo B, González J, Rodríguez-Zaragoza FA (2013a) Identifying keystone trophic groups in benthic ecosystems: implications for fisheries management. Ecol Indic 25:133–140

    Article  Google Scholar 

  • Ortiz M, Campos L, Berrios F, Rodríguez-Zaragoza FA, Hermosillo-Núñez BB, González J (2013b) Network properties and keystoneness assessment in different intertidal communities dominated by two ecosystem engineer species (SE Pacific coast): a comparative analysis. Ecol Model 250:307–318

    Article  Google Scholar 

  • Ortiz M, Berrios F, Campos L, Uribe R, Ramírez A, Hermosillo-Nuñez B, González J, Rodríguez-Zaragoza FA (2015) Mass balanced trophic models and short–term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): comparative network structure and assessment of human impacts. Ecol Model 309–310:153–162

    Article  Google Scholar 

  • Ortiz M, Hermosillo-Núñez BB, González J, Rodríguez-Zaragoza FA, Gómez I, Jordán F (2017) Quantifying keystone species complexes: ecosystem-based conservation management in the King George Island (Antarctic Peninsula). Ecol Indic 81:453–460

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. TREE 14:483–488

    CAS  PubMed  Google Scholar 

  • Paine RT (1969) A note of tropic complexity and community stability. Am Nat 103:91–93

    Article  Google Scholar 

  • Patrício J, Marques JC (2006) Mass balanced models of the food web in three areas along a gradient of eutrophication symptoms in the south arm of the Mondego estuary (Portugal). Ecol Model 197:21–34

    Article  Google Scholar 

  • Patten BC (1997) Synthesis of chaos and sustainability in a nonstationary linear dynamic model of the American black bear (Ursus americanus Pallas) in the Adirondack Mountains of New York. Ecol Model 100:11–42

    Article  Google Scholar 

  • Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57(3):697–706

    Article  Google Scholar 

  • Payton I, Fenner M, Lee W (2002) Keystone species: the concept and its relevance for conservation management in New Zealand. Sci Conserv 203:5–29

    Google Scholar 

  • Pessoa M (2012) Algae and aquatic macrophytes responses to cope to ultraviolet radiation- a review. Emir J Food Agric 24:527–545

    Article  Google Scholar 

  • Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, Doukakis P, Fluharty D et al (2004) Ecosystem-based fishery management. Science 305:346–347

    Article  CAS  PubMed  Google Scholar 

  • Pinkerton MH, Bradford-Grieve JM, Hanchet SM (2010) A balanced model of the food web of the Ross Sea, Antarctica. CCAMLR Sci 17:1–31

    Google Scholar 

  • Piraino S, Fanelli G, Boero F (2002) Variability of species roles in marine communities: changes of paradigms for conservation priorities. Mar Biol 140:1067–1074

    Article  Google Scholar 

  • Plante C, Mayer L (1994) Distribution and efficiency of bacteriolysis in the gut of Arenicola marina and three additional deposit feeders. Mar Ecol Prog Ser 109:183–194

    Article  Google Scholar 

  • Plante C, Shriver A (1998) Patterns of differential digestion of bacteria in deposit feeders: a test of resource partitioning. Mar Ecol Prog Ser 163:253–258

    Article  Google Scholar 

  • Polovina J (1984) Model of a coral reef ecosystem I. ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3:1–11

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchengo J, Paine RT (1996) Challenges in the Quest for Keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Puccia C, Levins R (1991) Qualitative modelling in ecology: loop analysis, signed digraphs, and time averaging. In: Fishwick PA, Luker PA (eds) Qualitative simulation modeling and analysis. Springer, New York, pp 119–143

    Chapter  Google Scholar 

  • Richter A, Wuttke S, Zacher K (2008) Two years of in situ UV measurements at Dallmann Laboratory/Jubany Station. In: Wiencke C, Ferreyra G, Abele D, Marenssi S (eds) The Antarctic ecosystem of Potter Cove, King George Island. Synopsis of research performed 1999–2006 at Dallmann Laboratory and Jubany Station. Reports on Polar and Marine Research, vol 571. AWI, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, pp 12–19

    Google Scholar 

  • Ricker WE (1968) Food from the sea. In: Committee on Resources and Man (ed) Resource and man. US National Academies of Sciences, EH Freeman, San Francisco, Chap 5, pp 87–108

    Google Scholar 

  • Smith W, Ainley D, Cattaneo-Vietti R (2007) Trophic interactions within the Ross Sea continental shelf ecosystem. Philos Trans R Soc Lond B Biol Sci 362:95–111

    Article  PubMed  Google Scholar 

  • Stark P (1994) Climate warning in the central Antarctic Peninsula area. Weather 49:215–220

    Article  Google Scholar 

  • Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Løseth K, Peters C et al (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett 7:321–325

    Article  Google Scholar 

  • Targett TE (1981) Trophic ecology and structure of coastal Antarctic fish communities. Mar Ecol Prog Ser 4:243–263

    Article  Google Scholar 

  • Ulanowicz RE (ed) (1986) Growth and development: ecosystems phenomenology. Springer, New York

    Google Scholar 

  • Ulanowicz R (1997) Ecology, the ascendent perspective. Complexity in ecological systems series. Columbia University Press, New York

    Google Scholar 

  • Ulanowicz R, Puccia CJ (1990) Mixed trophic impacts in ecosystems. Coenoses 5:7–16

    Google Scholar 

  • Valdivia N, Díaz M, Holtheuer J, Garrido I, Huovinen P, Gómez I (2014) Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PLoS One 9(6):e100714. https://doi.org/10.1371/journal.pone.0100714

  • Valdivia N, Díaz MJ, Garrido I, Gómez I (2015) Consistent richness-biomass relationship across environmental stress gradients in a marine macroalgal-dominated subtidal community on the Western Antarctic Peninsula. PLoS One 10(9):e0138582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valls A, Coll M, Christensen V, Ellison AM (2015) Keystone species: toward an operational concept for marine biodiversity conservation. Ecol Monogr 85:29–47

    Article  Google Scholar 

  • Vasas V, Lancelot C, Rousseau V, Jordán F (2007) Eutrophication and overfishing in temperate nearshore pelagic food webs: a network perspective. Mar Ecol Prog Ser 336:1–14

    Article  CAS  Google Scholar 

  • Walters C, Christensen V (2007) Adding realism to foraging arena predictions of trophic flow rates in Ecosim ecosystem models: shared foraging arenas and bout feeding. Ecol Model 209:342–350

    Article  Google Scholar 

  • Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of exploited ecosystems from trophic mass–balance assessments. Rev Fish Biol Fish 7:139–172

    Article  Google Scholar 

  • Warwick RM, Clarke KR (1993) Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. Mar Ecol Prog Ser 92:221–231

    Google Scholar 

  • Wolff M (1994) A trophic model for Tongoy Bay – a system exposed to suspended scallop culture (Northern Chile). J Exp Mar Biol Ecol 182:149–168

    Article  Google Scholar 

  • Wolff M, Koch V, Isaac V (2000) A trophic flow model of the Caeté mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Estuar Coast Shelf Sci 50:789–803

    Article  Google Scholar 

  • Wootton JT (1994) Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151–165

    Article  Google Scholar 

  • Yodzis P (2001) Must top predators be culled for the sake of fisheries? TREE 16:78–84

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financed by the grant Proyecto Anillo ART1101 (CONICYT-PIA). We also thank the Instituto Antártico Chileno (INACH) for logistic support. The work of Ferenc Jordán was supported by National Research, Development and Innovation Office – NKFIH, grant OTKA K 116071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ortiz .

Editor information

Editors and Affiliations

Appendix 16.A

Appendix 16.A

Table 16.4 Parameter values entered (in bold), estimated (standard), and calculated (in italics) by the Ecopath with Ecosim (EwE) software for the species and functional groups in the coastal benthic-pelagic ecosystem of Fildes Bay (Antarctica)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortiz, M., Hermosillo-Núñez, B.B., Jordán, F. (2020). Trophic Networks and Ecosystem Functioning. In: Gómez, I., Huovinen, P. (eds) Antarctic Seaweeds. Springer, Cham. https://doi.org/10.1007/978-3-030-39448-6_16

Download citation

Publish with us

Policies and ethics