Skip to main content

Machine Perception—Machine Perception MU

  • Chapter
  • First Online:
Machine Understanding

Part of the book series: Studies in Computational Intelligence ((SCI,volume 842))

Abstract

In the previous chapter the short survey of the philosophical inquires and psychological research in the human visual perception was outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nevatia R (1982) Machine perception Prentice-Hall. Englewood Cliffs, NJ

    Google Scholar 

  2. Roberts LG (1963) Machine perception of three-dimensional solids. In: Tippett JT et al (eds) Optical and electro-optical information processing. MIT Press, Cambridge, pp 159–197

    Google Scholar 

  3. Hochberg J, Brooks V (1962) Pictorial recognition as an unlearned ability: a study of one child’s performance. Am J Psychol 75(4):624–628

    Article  Google Scholar 

  4. Guzman A (1968) Computer recognition of three dimensional objects in a visual scene. Massachusetts Institute of Technology, Ph.D. thesis, Cambridge, MA

    Google Scholar 

  5. Clowes MB (1971) On seeing things. Artif Intell 2:79–116

    Article  Google Scholar 

  6. Huffman DA (1971) Impossible objects as nonsense sentences. Mach Intell 6:295–323

    Google Scholar 

  7. Waltz D (1975) Understanding line drawings of a scene with shadows. In: Winston PH (ed) The psychology of computer vision. McGraw-Hill, New York

    Google Scholar 

  8. Shimshoni I, Ponce J (1994) Recovering the shape of polyhedra using line-drawing analysis and complex reflectance models. In: CVPR, pp 514-519

    Google Scholar 

  9. Grimstead IJ (1997) Interactive sketch input of boundary representation solid models. Cardiff University

    Google Scholar 

  10. Varley PAC, Martin RR (2000) A system for constructing boundary representation solid models from a two-dimensional sketch. In: GMP. IEEE Press

    Google Scholar 

  11. Varley PAC, Martin RR (2001) The junction catalogue for labelling line drawing of polyhedra with tetrahedral vertices. Int J Shape Modell 7(1):23–44

    Article  Google Scholar 

  12. Mackworth AK (1973) Interpreting pictures of polyhedral scenes. Artif Intell 4:121–137

    Article  Google Scholar 

  13. Draper SW (1980) Reasoning about depth in line-drawing interpretation. Sussex University

    Google Scholar 

  14. Parodi P, Lancewicki R, Vijh A, Tsotsos JK (1998) Empirically-derived estimates of the complexity of labelling line drawing of polyhedral scenes. Artif Intell 105:47–75

    Article  MATH  Google Scholar 

  15. Sugihara K (1986) Machine interpretation of line drawings. MIT Press, Cambridge

    Google Scholar 

  16. Marr D, Nishihara K (1978) Representation and recognition of the spatial organization of three dimensional shapes. Proc R Soc Lond Ser B 200:269–294

    Article  Google Scholar 

  17. Humphreys GW, Quinlan PT (eds) (1987) Normal and pathological processes in visual object constancy. Visual object processing: a cognitive neuropsychological approach. Erlbaum, London

    Google Scholar 

  18. Rock I (1973) Orientation and form. Academic Press, New York

    Google Scholar 

  19. Ratcliff G, Newcombe F (1982) Object recognition: some deductions from the clinical evidence. In: Ellis AW (ed) Normality and pathology in cognitive functions. Academic Press, London

    Google Scholar 

  20. Riddoch MJ, Humphreys GW (1987) A case of integrative visual agnosia. Brain 110:1431–1462

    Article  Google Scholar 

  21. Warren CEJ, Morton J (1982) The effects of priming on picture naming. Br J Psychol 73:117–130

    Article  Google Scholar 

  22. Fischler M, Elschlager R (1973) The representation and matching of pictorial structures. IEEE Trans Comput 100(22):67–92

    Article  Google Scholar 

  23. Kanade T (1977) Computer recognition of human faces. Birkhauser, Basel

    Book  Google Scholar 

  24. Yuille A (1991) Deformable templates for face recognition. J Cogn Neurosci 3(1):59–70

    Article  MathSciNet  Google Scholar 

  25. Moghaddam B, Pentland A (1997) Probabilistic visual learning for object representation. IEEE Trans Pattern Anal Mach Vis 19(7):696–710

    Article  Google Scholar 

  26. Heisele B, Ho P, Wu J, Poggio T (2003) Face recognition: component-based versus global approaches. Comput Vis Image Underst 91(1–2):6–21

    Article  Google Scholar 

  27. Heisele B, Serre T, Poggio T (2007) A component-based framework for face detection and identification. Int J Comput Vis 74(2):167–181

    Article  Google Scholar 

  28. Felzenszwalb P, McAllester D, Ramanan D (2008) A discriminatively trained, multiscale, deformable part model. Paper presented at the IEEE computer society conference on computer vision and pattern recognition (CVPR 2008), Anchorage, AK

    Google Scholar 

  29. Fergus R (2007b) Part-based models, (CVPR 2008)

    Google Scholar 

  30. Fergus R (2009) Classical methods for object recognition. ICCV, Kyoto, Japan

    Google Scholar 

  31. Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early vision. Int J Comput Vis 70(1):41–54

    Article  Google Scholar 

  32. Oliva A, Torralba A (2005) Building the gist of a scene: the role of global image features in recognition. Prog Brain Res 155:23–36

    Article  Google Scholar 

  33. Divvala SK, Hoiem DW, Hays JH, Efros AA, Hebert M (2009) An empirical study of context in object detection. In: IEEE computer society conference on computer vision and pattern recognition workshop (CVPR), Miami, FL. IEEE Computer Society, pp 1271–1278

    Google Scholar 

  34. Torralba A, Freeman WT, Fergus R (2008) 80 million tiny images: a large dataset for non-parametric object and scene recognition. IEEE Trans Pattern Anal Mach Intell 30(11):1958–1970

    Article  Google Scholar 

  35. Lazebnik S, Schmid Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognition natural scene categories. In: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). IEEE Computer Society, pp 2169–2178

    Google Scholar 

  36. Russell BC, Torralba A, Liu C, Fergus R, Freeman WT (2007) Object recognition by scene alignment. Paper presented at the conference on neural information processing systems (NIPS)

    Google Scholar 

  37. Malisiewicz T, Efros AA (2008) Recognition by association via learning per-exemplar distances. CVPR

    Google Scholar 

  38. Murphy K, Torralba A, Freeman W (2003) Using the forest to see the tree: a graphical model relating features, objects and the scenes. In: Conference on neural information processing systems (NIPS)

    Google Scholar 

  39. Torralba A (2003) Contextual priming for object detection. Int J Comput Vis (IJCV) 53(2):169–191

    Article  Google Scholar 

  40. Torralba A, Murphy K, Freeman W, Rubin M (2003) Context-based vision system for place and object recognition. Paper presented at the international conference on computer vision (ICCV 2003). Nice, France

    Google Scholar 

  41. Verbeek J, Triggs B (2008) Scene segmentation with CRFs learned from partially labelled images. In: Conference on neural information processing systems (NIPS)

    Google Scholar 

  42. Palmer S (1975) Visual perception and world knowledge: notes on a model of sensory-cognitive interaction. In: Norman D, Rumelhart D (ed) Explorations in cognition. Freeman, San Francisco, pp 279–307

    Google Scholar 

  43. Sinha P, Torralba A (2002) Detecting faces in impoverished images. J Vis 2(7):601

    Article  Google Scholar 

  44. Carbonetto P, de Freitas N, Barnard K (2004) A statistical model for general contextual object recognition. In: European conference on computer vision (ECCV), 2004, pp 350–362

    Google Scholar 

  45. Fink M, Perona P (2003) Mutual boosting for contextual inference. In: Conference on neural information processing systems (NIPS)

    Google Scholar 

  46. He X, Zemel RS, Carreira-Perpinan MA (2004) Multiscale conditional random fields for image labelling. In: Conference on computer vision and pattern recognition (CVPR), 2004. pp 695–702

    Google Scholar 

  47. Kruppa H, Schiele B (2003) Using local context to improve face detection. In: British machine vision conference (BMVC)

    Google Scholar 

  48. Shotton J, Winn J, Rother C, Criminisi A (2007) Text on boost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context. Int J Comput Vis (IJCV)

    Google Scholar 

  49. Kumar S, Hebert M (2005) A hierarchical field framework for unified context-based classification. In: International conference on computer vision (ICCV) 2005, pp 1284–1291

    Google Scholar 

  50. Lipson P, Grimson E, Sinha P (1997) Configuration based scene classification and image indexing. In: Conference on computer vision and pattern recognition (CVPR), 1997, p 1007

    Google Scholar 

  51. Singhal A, Luo J, Zhu W (2003) Probabilistic spatial context models for scene content understanding. In: Conference on computer vision and pattern recognition (CVPR), 2003, p 235

    Google Scholar 

  52. Galleguillos C, Rabinovich A, Belongie S (2008) Object categorization using cooccurrence, location and appearance. Paper presented at the conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  53. Hanson A, Riseman E (1978) Visions: a computer system for interpreting scenes. In: Hanson A, Riseman E (eds) Computer vision systems. Academic Press, New York, pp 303–333

    Google Scholar 

  54. Rabinovich A, Vedaldi A, Galleguillos C, Wiewiora E, Belongie S (2007) Objects in context. In: Proceedings of the international conference on computer vision (ICCV)

    Google Scholar 

  55. Strat T, Fischler M (1991) Context-based vision: recognizing objects using information from both 2-d and 3-d imagery. Pattern Anal Mach Vis 13(10):1050–1065

    Article  Google Scholar 

  56. Torralba A, Murphy KP, Freeman WT (2004) Contextual models for object detection using boosted random fields. Paper presented at the conference on neural information processing systems (NIPS)

    Google Scholar 

  57. Wolf L, Bileschi S (2006) A critical view of context. Int J Comput Vis (IJCV)

    Google Scholar 

  58. Tsotsos JK, Mylopoulos J, Covvey HD, Zucker SW (1980) A framework for visual motion understanding. IEEE Trans Pattern Anal Mach Intell 2(6):563–573

    Article  Google Scholar 

  59. Brooks R (1981) Symbolic reasoning among 3-dimensional models and 2-dimensional images. Artif Intell 17:285–349

    Article  Google Scholar 

  60. Draper BA, Collins RT, Brolio J, Hanson AR, Riseman EM (1989) The schema system. Int J Comput Vis 2:209–250

    Article  Google Scholar 

  61. Matsuyama T, Hwang V (1990) SIGMA: a knowledge-based aerial image understanding system. Plenum Press, New York

    Book  Google Scholar 

  62. Dillon C, Caelli T (1997) Cite—scene understanding and object recognition. In: Caelli T, Bishof WF (eds) Machine learning and scene interpretation. Plenum Publishing Cooperation, New York, pp 119–187

    Chapter  Google Scholar 

  63. Dance S, Caelli T (1997) Soo-pin: picture interpretation networks. In: Caelli T, Bishof WF (eds) Advances in computer vision and machine intelligence. Plenum Publishing Cooperation, New York, pp 225–254

    Chapter  Google Scholar 

  64. Salzbrunn R (1997) Wissensbasierte Erkennung und Lokarisierung von objekten. Shaker Verlag, Aachen

    Google Scholar 

  65. Glasgow J, Narayanan NH, Chandrasekaran B (eds) (1995) Diagrammatic reasoning: cognitive and computational perspectives. The MIT Press, Cambridge

    Google Scholar 

  66. Anderson M, Meyer B, Olivier P (eds) (2002) Diagrammatic representation and reasoning. Springer, London

    MATH  Google Scholar 

  67. Michalski RS (1983) A theory and methodology of inductive learning. In: Michalski RS, Carbonell JG, Mitchel TM (eds) Machine learning: an artificial intelligence approach. Tioga Publishing, Palo Alto, pp 83–133

    Chapter  Google Scholar 

  68. Rosch E, Braem PB (1976) Basic objects in natural categories. Cogn Psychol 8:382–439

    Article  Google Scholar 

  69. Behl-Chadha G (1996) Basic-level and superordinate-like categorical representations in early infancy. Cognition 60:105–141

    Article  Google Scholar 

  70. Markman EM (1989) Categorization and naming in children: problems of induction. MIT Press, Cambridge

    Google Scholar 

  71. Wasserman EA, Astley SL (1994) A behavioral analysis of concepts: Its application to pigeons and children. In: Medin DL (ed) Psychology of learning and motivation. Academic Press, San Diego, pp 73–132

    Google Scholar 

  72. Gauthier I, Tarr MJ, Moylan J, Skudlarski P, Gore JC, Anderson AW (2000) The fusiform “face area” is part of a network that processes faces at the individual level. J Cogn Neurosci 12:495–504

    Article  Google Scholar 

  73. Jolicoeur P, Landau MJ (1984) Effects of orientation on the identification of simple visual patterns. Can J Psychol 38:80–93

    Article  Google Scholar 

  74. Farah MJ, Tanaka JW, Drain HM (1995) What causes the face inversion effect? J Exp Psychol: Hum Percept Perform 21:628–634

    Google Scholar 

  75. Marsolek CJ (1999) Dissociable neural subsystems underlie abstract and specific object recognition. Psychol Sci 10(2):111–118

    Article  Google Scholar 

  76. Op de Beeck H, Béatse E, Wagemans J, Sunaert S, Van Hecke P (2000) The representation of shape in the context of visual object categorization tasks. Neuroimage 12:28–40

    Article  Google Scholar 

  77. Palmer SE (1975) The effects of contextual scenes on the identification of objects. Memory and cognition

    Google Scholar 

  78. Bar M, Ullman S (1993) Spatial context in recognition. Perception 25:343–352

    Article  Google Scholar 

  79. Parikh D, Zitnick C, Chen T (2008) From appearance to context-based recognition: Dense labelling in small images. Paper presented at the conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  80. Requicha AG (1980) Representations for rigid solids: theory, methods, and systems. ACM Comput Surv 12(4):437–464

    Article  Google Scholar 

  81. Badler N, Bajscy R (1978) Three-dimensional representation for computer graphics and vision. ACM SIGGRAPH Comput Graph

    Google Scholar 

  82. Baumgart BG (1972) Winged edge polyhedron representation. Technical report. Stanford University

    Google Scholar 

  83. Coons SA (1974) Surface patches and B-spline Curves. In: Computer aided geometric design. Academic Press, pp 1–16

    Google Scholar 

  84. Koenderink J, van Doorn A (1986) Dynamic shape. Biol Cybern 53:383–396

    Article  MathSciNet  MATH  Google Scholar 

  85. Biederman I (1987) Recognition by components: a theory of human image understanding. Psychol Rev 94:115–147

    Article  Google Scholar 

  86. Palmer S, Nelson R (2000) Late influences on perceptual grouping: illusory figures. Percept Psychophys 62(7):1321–1331

    Article  Google Scholar 

  87. Chakravarty I, Freeman H (1982) Characteristic view as a basis for three-dimensional object recognition. In: Conference of international society for optical engineering 1982

    Google Scholar 

  88. Winston P (1975) Learning structural descriptions from examples. In: Winston PH (ed) Psychology of computer vision. McGraw Hill, New York

    Google Scholar 

  89. Connell J, Brady M (1987) Generating and generalizing models of visual objects. Artif Intell 3:159–183

    Article  Google Scholar 

  90. Dong G, Yanaguchi T, Yagi Y, Yachida M (1994) Shape concept learning from examples and explanation. Comput Vis 87–8(8):57–64

    Google Scholar 

  91. Haar RL (1982) Sketching: estimating object positions from relational descriptions. Comput Graph Image Process 19:227–247

    Article  Google Scholar 

  92. Ueda N, Suzuki S (1993) Leaning visual modes from shape contours using multiscale convex/concave structure matching. IEEE Trans Pattern Anal Mach Intellig PAMI-15(4):337–352

    Article  Google Scholar 

  93. Arnheim R (1970) Visual thinking. Faber and Faber, London

    Google Scholar 

  94. Kellman P, Shipley T (1990) Visual interpolation in object perception: a computational theory (manuscript). New York

    Google Scholar 

  95. Briscoe RE (2011) Mental imagery and the varieties of a modal perception. Pac Philos Q

    Google Scholar 

  96. Wertheimer M (1923) Untersuchungen zur Lehre von der Gestalt. Psychologische Forschung 4:301–350

    Article  Google Scholar 

  97. Koffka K (1962) Principles of gestalt psychology. Routledge & Kegan Paul, London

    Google Scholar 

  98. Kanizsa C (1979) Organization in vision. New York

    Google Scholar 

  99. Kanizsa G (1979) Organization in vision. Essays on gestalt perception. Praeger, New York

    Google Scholar 

  100. Kanizsa G (1985) Seeing and thinking. Acta Psychol 59:23–33

    Article  Google Scholar 

  101. Kellman PJ, Shipley TF (1991) A theory of visual interpolation in object perception. Cogn Psychol 23:141–221

    Article  Google Scholar 

  102. Boselie F, Wouterlood D (1992) A critical discussion of Kellman and Shipley’s (1991) theory of occlusion phenomena. Psychol Res 54:278–285

    Article  Google Scholar 

  103. Wouterlood D, Boselie F (1992) A good-continuation model of some occlusion phenomena. Psychol Res 54:267–277

    Article  Google Scholar 

  104. Hochberg J, McAlister E (1953) A quantitative approach to figural ‘goodness’. J Exp Psychol 46:361–364

    Article  Google Scholar 

  105. Leeuwenberg E (1969) Quantitative specification of information in sequential patterns. Psychol Rev 16:216–220

    Article  Google Scholar 

  106. Leeuwenberg E (1971) A perceptual coding language for visual and auditory patterns. Psychol Rev 76:307–349

    Google Scholar 

  107. Buffart H, Leeuwenberg E, Restle F (1981) Coding theory of visual pattern completion. J Exp Psychol Hunan Percept Perform 7:241–274

    Article  Google Scholar 

  108. Buffart H, Leeuwenberg E, Restlem F (1983) Analysis of ambiguity in visual pattern completion. J Exp Psychol Hunan Percept Perform 9:980–1000

    Article  Google Scholar 

  109. Sekuler AB (1994) Local and global minima in visual completion: effects of symmetry and orientation. Perception 23:529–545

    Article  Google Scholar 

  110. van Lier RL, van der Helm P (1995a) Multiple completions primed by occlusion patterns. Perception 24:727–740

    Article  Google Scholar 

  111. van Lier R, Wagemans J (1999) From images to objects: global and local completions of self-occluded parts. J Exp Psychol Hum Percept Perform 25:1721–1741

    Google Scholar 

  112. Rock I (1983) The logic of perception. The MIT Press, Cambridge

    Google Scholar 

  113. Boselie F (1988) Local versus global minima in visual pattern completion. Percept Psychophys 43:431–445

    Article  Google Scholar 

  114. Van Lier R, Van der Helm, Leeuwenberg E (1994) Integrating global and local aspects of visual occlusion. Perception 23:883–903

    Article  Google Scholar 

  115. Lier RHP, Leeuwenberg E (1995) ) Competing global and local completions in visual occlusion. J Experiential Psychol Hum Percept Perform 21:571–583

    Article  Google Scholar 

  116. Shipley TF, Kellman PJ (1992) Perception of partly occluded objects and illusory figures: evidence for an identity hypothesis. J Experimental Psychol Hum Percept Perform 18:106–120

    Article  Google Scholar 

  117. Yin C, Kellman PJ, Shipley TF (1997) Surface completion complements boundary interpolation in the visual integration of partly occluded objects. Perception 26:1459–1479

    Article  Google Scholar 

  118. Rubin N (2001) The role of junctions in surface completion and contour matching. Perception 30:339–366

    Article  Google Scholar 

  119. de Wit CJ, van Lier RJ (2002) Global visual completion of quasi-regular shapes. Perception 31:969–984

    Article  Google Scholar 

  120. Albert MK (2007) Occlusion, transparency, and lightness. Vis Res 47:3061–3069

    Article  Google Scholar 

  121. Anderson B, Winawer J (2005) Image segmentation and lightness perception. Nature 434:79–83

    Article  Google Scholar 

  122. Adelson EH (1993) Perceptual organization and the judgement of brightness. Science 262:2042–2044

    Article  Google Scholar 

  123. Adelson EH (2000) Lightness perception and lightness illusions. In: Gazzaniga M (ed) The new cognitive neuroscience. MIT Press, Cambridge, pp 339–351

    Google Scholar 

  124. Metelli F (1974) The perception of transparency. Sci Am 230:90–98

    Article  Google Scholar 

  125. Arnheim R (1974) Art and visual perception. A psychology of the creative eye. University of California Press, Berkeley

    Google Scholar 

  126. Schumann F (1904) Einige Beobachtungen uber die Zusammenfassung von Gesichtseindriicken zu Einheiten. Psychologische Studien 1:1–3

    Google Scholar 

  127. Kanizsa G (1955) Marzini quasi-percettivi in campi con stimolazione omogenea. Riv di psicologia 49:7–30

    Google Scholar 

  128. Julesz B (1964) Binocular depth perception without familiarity cues. Science 145:356–362

    Article  Google Scholar 

  129. Coren S (1972) Subjective contours and apparent depth. Psychol Rev 79(4):3S9–367

    Article  Google Scholar 

  130. Parks TE (1984) Illusory figures: a (mostly) theoretical review. Psychol Bull 95:282–300

    Article  Google Scholar 

  131. Pritchard WS, Warm JS (1983) Attentional processing and the subjective contour illusion. J Exp Psychol 112:145–175

    Article  Google Scholar 

  132. Grossberg S, Mingolla E (1985) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychol Rev 92:173–211

    Article  Google Scholar 

  133. Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco

    Google Scholar 

  134. Saund E (1999) Perceptual organization of occluding contours of opaque surfaces. Comput Vis Image Underst 76(1):70–82

    Article  Google Scholar 

  135. Kogo N, Drozdzewska A, Zaenen P, Alp N, Wagemans J (2014) Depth perception of illusory surfaces. Vis Res 96:58–64

    Article  Google Scholar 

  136. Kogo N, Strecha C, Van Gool L, Wagemans J (2010) Surface construction by a 2-D differentiation–integration process: a neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychol Rev 117(2):406–439

    Article  Google Scholar 

  137. Arnheim R (1954) Art and visual perception: a psychology of the creative eye

    Google Scholar 

  138. Les Z, Les M (2008) Shape understanding system. The first steps toward the visual thinking machines. Stud Comput Intell. Springer, Berlin

    Book  MATH  Google Scholar 

  139. Les Z, Les M (2013) Shape understanding system—knowledge implementation and learning. Studies in computational intelligence. Springer, Berlin

    Google Scholar 

  140. Les Z, Les M (2015) Shape understanding system—machine understanding and human understanding. Studies in computational intelligence. Springer, Berlin

    Google Scholar 

  141. Koffka K (1935) Principles of gestalt psychology. Harcourt Brace, Jovanovic

    Google Scholar 

  142. Weisberg R, Alba J (1982) Problem solving is not like perception: more on Gestalt theory. J Exp Psychol 111(3):326–330

    Article  Google Scholar 

  143. Schwering A, Krumnack U, Kühnberger KW, Gust H (2007) Using gestalt principles to compute analogies of geometric figures. In: 2007. Nashville, TN

    Google Scholar 

  144. Lowe D (1985) Perceptual organization and visual recognition. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  145. Krizhevsky A, Sutskever I, Hinton GE (2012) Image net classification with deep convolutional neural networks. Paper presented at the NIPS

    Google Scholar 

  146. Warrington EK, Taylor AM (1978) Two categorical stages of object recognition. Perception 7(6):695–705

    Article  Google Scholar 

  147. Les Z (2001) Shape understanding. Possible classes of shapes. Int J Shape Modell 7(1):75–109

    Article  Google Scholar 

  148. Les Z (1996) An aesthetic evaluation method based on image understanding approach. In: The first international conference on visual information systems VISUAL’96, Melbourne, 5–6 Feb 1996. VUT, pp 317–327

    Google Scholar 

  149. Biederman I, Mezzanotte RJ, Rabinowitz JC (1982) Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14(2):143–177

    Article  Google Scholar 

  150. Les Z, Les M (2018) Machine understanding—testing visual understanding ability of machine: the visual intelligence test. Int J Underst 7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Les .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Les, Z., Les, M. (2020). Machine Perception—Machine Perception MU. In: Machine Understanding. Studies in Computational Intelligence, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-030-24070-7_2

Download citation

Publish with us

Policies and ethics