Skip to main content

Angiogenesis

  • Chapter
Cardiovascular Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977;14:53–65.

    Article  PubMed  CAS  Google Scholar 

  2. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD. Mechanisms of neovascularization: vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 1984;51:624–634.

    PubMed  CAS  Google Scholar 

  3. Nicosia RF, Bonanno E, Smith M. Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 1993;154:654–661.

    Article  PubMed  CAS  Google Scholar 

  4. Pepper MS, Montesano R. Proteolytic balance and capillary morphogenesis. Cell Diff Dev 1990;32:319–328.

    Article  CAS  Google Scholar 

  5. Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991;181:902–906.

    Article  PubMed  CAS  Google Scholar 

  6. Schaper W, Brahander MD, Lewi P. DNA synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 1971;28:671–679.

    PubMed  CAS  Google Scholar 

  7. Cowan DF, Hollenberg NK, Connelly CM, Williams DH, Abrams HL. Increased collateral arterial and venous endothelial cell turnover after renal artery stenosis in the dog. Invest Radiol 1978;13:143–149.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931–10934.

    PubMed  CAS  Google Scholar 

  9. Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, Steinseifer B. DNA synthesis in coronary collaterals after coronary artery occlusion in conscious dog. Am J Physiol 1982;242:H1031–H1037.

    PubMed  CAS  Google Scholar 

  10. Ilich N, Hollenberg NK, Williams DH, Abrams HL. Time course of increased collateral arterial and venous endothelial cell turnover after renal artery stenosis in the rat. Circ Res 1979;45:579–582.

    PubMed  CAS  Google Scholar 

  11. White FC, Carroll SM, Magnet A, Bloor CM. Coronary collateral development in swine after coronary artery occlusion. Circ Res 1992;71:1490–1500.

    PubMed  CAS  Google Scholar 

  12. Schaper W, Schaper J, Xhonneux R, Vandesteene R. The morphology of intercoronary anastomoses in chronic coronary artery occlusion. Cardiovasc Res 1969;3:315–323.

    PubMed  CAS  Google Scholar 

  13. Cuevas P, Gonzalez AM, Carceller F, Baird A. Vascular response to basic fibroblast growth factor when infused onto the normal adventitia or into the injured media of the rat carotid artery. Circ Res 1991;69:360–369.

    PubMed  CAS  Google Scholar 

  14. Bucay M, Nguy JH, Barrios R, Kerns SA, Henry PD. Impaired macro-and microvascular growth in hypercholesterolemic rabbits. J Am Coll Cardiol 1992;19:151A.

    Google Scholar 

  15. Graham AM, Baffour R, Burdon T, et al. A demonstration of vascular proliferation in response to arteriovenous reversal in the ischemic canine hind limb. J Surg Res 1989;47:341–347.

    Article  PubMed  CAS  Google Scholar 

  16. Takeshita S, Rossow ST, Kearney M, et al. Time course of increased cellular proliferation in collateral arteries following administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am J Pathol 1995;147:1649–1660.

    PubMed  CAS  Google Scholar 

  17. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995;11:73–91.

    Article  PubMed  CAS  Google Scholar 

  18. Risau W, Sariola H, Zerwes HG, et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 1988;102:471–478.

    PubMed  CAS  Google Scholar 

  19. His W. Leoithoblast und angioblast der wirbelthiere. Abhandl Ges Wiss Math Phys 1900;22:171–328.

    Google Scholar 

  20. Flamme I, Risau W. Induction of vasculogenesis and hematopoiesis in vitro. Development 1992;116:435–439.

    PubMed  CAS  Google Scholar 

  21. Weiss M, Orkin SH. In vitro differentiation of murine embryonic stem cells: new approaches to old problems. J Clin Invest 1996;97:591–595.

    PubMed  CAS  Google Scholar 

  22. Pardanaud L, Altman C, Kitos P, Dieterien-Lievre F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 1989;105:473–485.

    PubMed  CAS  Google Scholar 

  23. Asahara T, MurO’Hara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  24. Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362–367.

    PubMed  CAS  Google Scholar 

  25. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 1998;125:1457–1468.

    PubMed  CAS  Google Scholar 

  26. Niklason LE, Sauvage LR, Hammond WP, Wu MH-D. Replacement arteries made to order. Science 1999;286:1493–1494.

    Article  PubMed  CAS  Google Scholar 

  27. Rekhter MD, Hicks GW, Brammer DW, et al. Animal model that mimics atherosclerotic plaque rupture. Circ Res 1998;83:705–713.

    PubMed  CAS  Google Scholar 

  28. Gerber H-P, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival in neonatal mice. Development 1999;126:1149–1159.

    PubMed  CAS  Google Scholar 

  29. Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000;355:1688–1691.

    Article  PubMed  CAS  Google Scholar 

  30. Risau W, Sariola H, Zerwes H-G, et al. Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 1988;102:471–478.

    PubMed  CAS  Google Scholar 

  31. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–228.

    PubMed  CAS  Google Scholar 

  32. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000;86:1198–1202.

    PubMed  CAS  Google Scholar 

  33. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992;257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  34. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994;93:662–670.

    PubMed  CAS  Google Scholar 

  35. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575–583.

    Article  PubMed  CAS  Google Scholar 

  36. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002;8:831–840.

    PubMed  CAS  Google Scholar 

  37. Pola R, Ling LE, Aprahamian TR, et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 2003;108:479–485.

    Article  PubMed  Google Scholar 

  38. Kirchmair R, Gander R, Egger M, et al. The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation 2004;109:777–783.

    Article  PubMed  CAS  Google Scholar 

  39. Asahara T, Chen D, Takahashi T, et al. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 1998;83:233–240.

    PubMed  CAS  Google Scholar 

  40. Anagnostou A, Lee E, Kessimian N, Levinson R, Steiner M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 1990;87:5978–5982.

    Article  PubMed  CAS  Google Scholar 

  41. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1340–1346.

    Article  PubMed  CAS  Google Scholar 

  42. Miele C, Rochford JJ, Filippa N, Giorgetti-Peraldi S, Van Obberghen E. Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways. J Biol Chem 2000;275:21695–21702.

    Article  PubMed  CAS  Google Scholar 

  43. Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001;50:1414–1424.

    Article  PubMed  CAS  Google Scholar 

  44. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 2004;109:2692–2697.

    Article  PubMed  Google Scholar 

  45. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part I: angiogenic cytokines. Circulation 2004;109:2487–2491.

    Article  PubMed  Google Scholar 

  46. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995;92:5510–5514.

    Article  PubMed  CAS  Google Scholar 

  47. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 1995;182:1683–1693.

    Article  PubMed  CAS  Google Scholar 

  48. Shyu K-G, Vincent KA, Luo A, et al. Naked DNA encoding an hypoxia-inducible factor 1a(HIF-1a)/VP16 hybrid transcription factor enhances angiogenesis in rabbit hindlimb ischemia: an alternate method for therapeutic angiogenesis utilizing a transcriptional regulatory system. Circulation 1998;98:I–68.

    Google Scholar 

  49. Pola R, Ling LE, Silver M, et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 2001;7:706–711.

    Article  PubMed  CAS  Google Scholar 

  50. Kusano K, Pola R, Murayama T, et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 2005;11:1197–1204.

    Article  PubMed  CAS  Google Scholar 

  51. Kusano K, Allendoerfer KL, Munger W, et al. Sonic Hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 2004;24:1–7.

    Article  CAS  Google Scholar 

  52. Zhong J, Eliceiri B, Stupack D, et al. Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del-1. J Clin Invest 2003;112:30–41.

    Article  PubMed  CAS  Google Scholar 

  53. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 1998;95:6355–6360.

    Article  PubMed  CAS  Google Scholar 

  54. Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling. Circ Res 2000;86:4–5.

    PubMed  CAS  Google Scholar 

  55. Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 2002;90:1243–1250.

    Article  PubMed  CAS  Google Scholar 

  56. Treat-Jacobson D, Halverson SL, Ratchford A, Regensteiner JG, Lindquist R, Hirsch AT. A patient-derived perspective of health related quality of life with peripheral arterial disease. J Nurs Scholarship 2002;34:55–60.

    Article  Google Scholar 

  57. Eneroth M, Persson BM. Amputation for occlusive arterial disease. A multicenter study of 177 amputees. Int Orthop 1992;16:382–387.

    Article  Google Scholar 

  58. Campbell WB, Johnston JA, Kernick VF, Rutter EA. Lower limb amputation: striking the balance. Ann R Coll Surg Engl 1994;76:205–209.

    PubMed  CAS  Google Scholar 

  59. Dawson I, Keller BP, Brand R, Pesch-Batenburg J, Hajo van Bockel J. Late outcomes of limb loss after failed infrainguinal bypass. J Vasc Surg 1995;21:613–622.

    Article  PubMed  CAS  Google Scholar 

  60. Skinner JA, Cohen AT. Amputation for premature peripheral atherosclerosis: do young patients do better? Lancet 1996;348:1396.

    Article  PubMed  CAS  Google Scholar 

  61. Goldberg MA, Schneider TJ. Similarities between the oxygensensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 1994;269:4355–4359.

    PubMed  CAS  Google Scholar 

  62. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996;371:2746–2753.

    Article  Google Scholar 

  63. Brogi E, Schatteman G, Wu T, et al. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 1996;97:469–476.

    PubMed  CAS  Google Scholar 

  64. Waltenberger J, Mayr U, Pentz S, Hombach V. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 1996;94:1647–1654.

    PubMed  CAS  Google Scholar 

  65. Sellke FW, Laham RJ, Edelman ER, Pearlman JD, Simons M. Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results. Ann Thorac Surg 1998;65:1540–1544.

    Article  PubMed  CAS  Google Scholar 

  66. Cuevas P, Carceller F, Ortega S, Zazo M, Nieto I, Gimenez-Gallego G. Hypotensive activity of fibroblast growth factor. Science 1991;254:1208–1210.

    Article  PubMed  CAS  Google Scholar 

  67. Hariawala MD, Horowitz JR, Esakof D, et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996;63:77–82.

    Article  PubMed  CAS  Google Scholar 

  68. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–1468.

    Article  PubMed  CAS  Google Scholar 

  69. Gal D, Weir L, Leclerc G, Pickering JG, Hogan J, Isner JM. Direct myocardial transfection in two animal models: Evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest 1993;68:18–25.

    PubMed  CAS  Google Scholar 

  70. Takeshita S, Isshiki T, Sato T. Increased expression of direct gene transfer into skeletal muscles observed after acute ischemic injury in rats. Lab Invest 1996;74:1061–1065.

    PubMed  CAS  Google Scholar 

  71. Tsurumi Y, Takeshita S, Chen D, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996;94:3281–3290.

    PubMed  CAS  Google Scholar 

  72. Takeshita S, Losordo DW, Kearney M, Isner JM. Time course of recombinant protein secretion following liposome-mediated gene transfer in a rabbit arterial organ culture model. Lab Invest 1994;71:387–391.

    PubMed  CAS  Google Scholar 

  73. Losordo DW, Pickering JG, Takeshita S, et al. Use of the rabbit ear artery to serially assess foreign protein secretion after site specific arterial gene transfer in vivo: Evidence that anatomic identification of successful gene transfer may underestimate the potential magnitude of transgene expression. Circulation 1994;89:785–792.

    PubMed  CAS  Google Scholar 

  74. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002;105:732–738.

    Article  PubMed  CAS  Google Scholar 

  75. Murasawa S, Llevadot J, Silver M, Isner JM, Losordo DW, Asahara T. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 2002;106:1133–1139.

    Article  PubMed  CAS  Google Scholar 

  76. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrowderived endothelial progenitor cells. EMBO J 1999;18:3964–3972.

    Article  PubMed  CAS  Google Scholar 

  77. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003;107:1322–1328.

    Article  PubMed  CAS  Google Scholar 

  78. Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 2005;111:1114–1120.

    Article  PubMed  Google Scholar 

  79. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851–855.

    Article  PubMed  CAS  Google Scholar 

  80. Connolly DT, Hewelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989;84:1470–1478.

    PubMed  CAS  Google Scholar 

  81. Bauters C, Asahara T, Zheng LP, et al. Physiologic assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am J Physiol 1994;267:H1263–H1271.

    PubMed  CAS  Google Scholar 

  82. Bauters C, Asahara T, Zheng LP, et al. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation 1995;91:2802–2809.

    PubMed  CAS  Google Scholar 

  83. Takeshita S, Kearney M, Loushin C, et al. In vivo evidence that vascular endothelial growth factor stimulates collateral formation inducing arterial cell proliferation in a rabbit ischemic hindlimb. J Am Coll Cardiol 1994;23:294A.

    Google Scholar 

  84. Isner JM, Walsh K, Symes JF, et al. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995;91:2687–2692.

    PubMed  CAS  Google Scholar 

  85. Isner JM. Arterial gene transfer for naked DNA for therapeutic angiogenesis: early clinical results. Adv Drug Delivery 1998;30:185–197.

    Article  CAS  Google Scholar 

  86. Witzenbichler B, Asahara T, MurO’Hara T, et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 1998;153:381–394.

    PubMed  CAS  Google Scholar 

  87. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998;97:1114–1123.

    PubMed  CAS  Google Scholar 

  88. Rauh G, Gravereaux EC, Pieczek AM, Radley S, Schainfeld RM, Isner JM. Age <50 years and rest pain predict positive clinical outcome after intramuscular gene transfer of phVEGF165 in patients with critical limb ischemia. Circulation 1999;100:I–319.

    Google Scholar 

  89. Baumgartner I, Rauh G, Pieczek A, et al. Lower-extremity edema associated with gene transfer of naked DNA vascular endothelial growth factor. Ann Intern Med 2000;132:880–884.

    PubMed  CAS  Google Scholar 

  90. van der Zee R, MurO’Hara T, Luo Z, et al. Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 1997;95:1030–1037.

    PubMed  Google Scholar 

  91. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995;108:2369–2379.

    PubMed  CAS  Google Scholar 

  92. Isner JM, Baumgartner I, Rauh G, et al. Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 1998;28:964–973; discussion 973–975.

    Article  PubMed  CAS  Google Scholar 

  93. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  94. Asahara T, Bauters C, Pastore CJ, et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 1995;91:2793–2801.

    PubMed  CAS  Google Scholar 

  95. Asahara T, Chen D, Tsurumi Y, et al. Accelerated restitution of endothelial integrity and endothelium-dependent function following phVEGF165 gene transfer. Circulation 1996;94:3291–3302.

    PubMed  CAS  Google Scholar 

  96. Isner JM, Walsh K, Symes J, et al. Arterial gene transfer for therapeutic angiogenesis in patients with peripheral artery disease. Hum Gene Ther 1996;7:959–988.

    Article  PubMed  CAS  Google Scholar 

  97. Vale PR, Wuensch DI, Rauh GF, Rosenfield K, Schainfeld RM, Isner JM. Arterial gene therapy for inhibiting restenosis in patients with claudication undergoing superficial femoral artery angioplasty. Circulation 1998;98:I–66.

    Google Scholar 

  98. Rivard A, Silver M, Chen D, et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 1999;154:355–363.

    PubMed  CAS  Google Scholar 

  99. Rajagopalan S, Shah M, Luciano A, Crystal R, Nabel EG. Adenovirus-mediated gene transfer of VEGF(121) improves lower-extremity endothelial function and flow reserve. Circulation 2001;104:753–755.

    Article  PubMed  CAS  Google Scholar 

  100. Rajagopalan S, Mohler E 3rd, Lederman RJ, et al. Regional Angiogenesis with Vascular Endothelial Growth Factor (VEGF) in peripheral arterial disease: Design of the RAVE trial. Am Heart J 2003;145:1114–1118.

    Article  PubMed  CAS  Google Scholar 

  101. Yang HT, Deschenes MR, Ogilvie RW, Terjung RT. Basic fibroblast growth factor increases collateral blood flow in rats with femoral artery ligation. Circ Res 1996;79:62–69.

    PubMed  CAS  Google Scholar 

  102. Lazarous DF, Unger EF, Epstein SE, et al. Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol 2000;36:1339–1344.

    Article  Google Scholar 

  103. Lederman RJ, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with Recombinant Fibroblast growth Factor-2 for Intermittent Claudication (the TRAFFIC study): a randomised trial. Lancet 2002;359:2053–2058.

    Article  PubMed  CAS  Google Scholar 

  104. Comerota AJ, Throm RC, Miller KA, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 2002;35:930–936.

    Article  PubMed  Google Scholar 

  105. Powell RJ, Dormandy J, Simons M, Morishita R, Annex BH. Therapeutic angiogenesis for critical limb ischemia: design of the hepatocyte growth factor therapeutic angiogenesis clinical trial. Vasc Med 2004;9:193–198.

    Article  PubMed  Google Scholar 

  106. Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994;89:2183–2189.

    PubMed  CAS  Google Scholar 

  107. Pearlman JD, Hibberd MG, Chuang ML, et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med 1995;1:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  108. Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor in chronic myocardial ischemia. Am J Physiol 1996;270:H1791–H1802.

    PubMed  CAS  Google Scholar 

  109. Lopez JJ, Laham RJ, Stamler A, et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 1998;40:272–281.

    Article  PubMed  CAS  Google Scholar 

  110. Henry TD, Rocha-Sing K, Isner JM, et al. Intracoronary administration of recombinant human vascular endothelial growth factor (rhVEGF) to patients with coronary artery disease. Am Heart J 2001;142:872–880.

    Article  PubMed  CAS  Google Scholar 

  111. Henry TD, Abraham JA. Review of preclinical and clinical results with vascular endothelial growth factors for therapeutic angiogenesis. Curr Intervent Cardiol Rep 2000;2:228–241.

    Google Scholar 

  112. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopex JJ, Giordano FJ. The VIVA trial: Vascular endothelial growth factor in ischemia or vascular angiogenesis. Circulation 2003;107:1359–1365.

    Article  PubMed  CAS  Google Scholar 

  113. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800–2804.

    PubMed  CAS  Google Scholar 

  114. Symes JF, Losordo DW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease: preliminary clinical results. Ann Thorac Surg 1999;68:830–837.

    Article  PubMed  CAS  Google Scholar 

  115. Shen Y-T, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs: hibernation versus stunning? Circ Res 1995;76:479–488.

    PubMed  CAS  Google Scholar 

  116. Wijns W, Vatner SF, Camici PG. Hibernating myocardium. N Engl J Med 1998;3:173–181.

    Article  Google Scholar 

  117. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993;87:1–20.

    PubMed  CAS  Google Scholar 

  118. Vale PR, Losordo DW, Milliken CE, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000;102:965–974.

    PubMed  CAS  Google Scholar 

  119. Vale PR, Losordo DW, Tkebuchava T, Chen D, Milliken CE, Isner JM. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J Am Coll Cardiol 1999;34:246–254.

    Article  PubMed  CAS  Google Scholar 

  120. Vale PR, Losordo DW, Milliken CE, et al. Randomized, singleblind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001;103:2138–2143.

    PubMed  CAS  Google Scholar 

  121. Losordo DW, Vale PR, Hendel RC, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002;105:2012–2018.

    Article  PubMed  CAS  Google Scholar 

  122. Kastrup J, Jorgensen E, Ruck A, et al. Direct intramyocardial plasmid vascular growth factor A165 gene therapy in patients with stable severe angina pectoris: a randomized double-blind placebo controlled study: the Euroinject-One Trial. J Am Coll Cardiol 2005;45:982–988.

    Article  PubMed  CAS  Google Scholar 

  123. Mack CA, Patel SR, Schwarz EA, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168–176; discussion 176–177.

    Article  PubMed  CAS  Google Scholar 

  124. Lee LY, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 2000;69:14–23; discussion 23–24.

    Article  PubMed  CAS  Google Scholar 

  125. Lazarous DF, Shou M, Stiber JA, et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 1999;44:294–302.

    Article  PubMed  CAS  Google Scholar 

  126. Rosengart TK, Lee LY, Patel SR, et al. Angiogenesis gene therapy: Phase I assessment of direct intramyocardial administration of an adenovirus vector expression VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468–474.

    PubMed  CAS  Google Scholar 

  127. Stewart JD. A phase 2 randomized, multicenter, 26-week study to assess the efficacy and safety of BIOBYPASS (adgfVEGF121.10) delivered through maximally invasive surgery versus maximal medical treatment in patients with severe angina, advanced coronary artery disease and no options for revascularization (The REVASC Trial). Circulation 2002;106:2986a.

    Article  CAS  Google Scholar 

  128. Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary VEGF transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia. Phase II results of the KAT-trial. Circulation 2003;107:2677–2683.

    Article  PubMed  CAS  Google Scholar 

  129. Unger EF, Banai S, Shou M, et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994;266:H1588–H1595.

    PubMed  CAS  Google Scholar 

  130. Lazarous DF, Scheinowtiz M, Shou M, et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 1995;91:145–153.

    PubMed  CAS  Google Scholar 

  131. Schumacher B, Stegmann T, Pecher P. The stimulation of neoangiogenesis in the ischemic human heart by the growth factor FGF: first clinical results. J Cardiovasc Surg 1998;39:783–789.

    CAS  Google Scholar 

  132. Stegmann TJ, Hoppert T, Schlurmann W, Gemeinhardt S. First angiogenic treatment of coronary heart disease by FGF-1: longterm results after 3 years. Cardiac Vasc Regen 2000;1:5–10.

    Google Scholar 

  133. Laham RJ, Sellke FW, Edelman ER, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase 1 randomized, double-blind, placebo-controlled trial. Circulation 1999;100:1865–1871.

    PubMed  CAS  Google Scholar 

  134. Stegmann TJ, Hoppert T, Schneider A, et al. Induction of myocardial neoangiogenesis by human growth factors. A new therapeutic option in coronary heart disease. Herz 2000;25:589–599.

    Article  PubMed  CAS  Google Scholar 

  135. Udelson JE, Dilsizian V, Laham RJ, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease. Circulation 2000;102:1605–1610.

    PubMed  CAS  Google Scholar 

  136. Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase 1 open-label dose escalation study. J Am Coll Cardiol 2000;36:2132–2139.

    Article  PubMed  CAS  Google Scholar 

  137. Unger EF, Goncalves L, Epstein SE, Chew EY, Trapnell CB, Cannon RO III. Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris. Am J Cardiol 2000;85:1414–1419.

    Article  PubMed  CAS  Google Scholar 

  138. Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial (The FIRST Trial). Circulation 2002;105:788–793.

    Article  PubMed  CAS  Google Scholar 

  139. Giordano FJ, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534–539.

    Article  PubMed  CAS  Google Scholar 

  140. Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002;105:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  141. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634–637.

    PubMed  CAS  Google Scholar 

  142. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430–436.

    Article  PubMed  CAS  Google Scholar 

  143. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 2003;107:461–468.

    Article  PubMed  Google Scholar 

  144. Stamm C, Westphal B, Kleine HD, et al. Autologous bonemarrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–46.

    Article  PubMed  Google Scholar 

  145. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003;361:47–49.

    Article  PubMed  Google Scholar 

  146. Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726–1732.

    Article  PubMed  CAS  Google Scholar 

  147. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302.

    Article  PubMed  Google Scholar 

  148. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–1918.

    Article  PubMed  Google Scholar 

  149. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 2002;106:3009–3017.

    Article  PubMed  Google Scholar 

  150. Wollert KC, Meyer GP, Lotz J, et al. Randomized controlled clinical trial of intracoronary autologous bone marrow cell transfer post myocardial infarction (BOOST Trial). Circulation 2003;108:2723(abstr).

    Google Scholar 

  151. Hariawala MD, Horowitz JR, Esakof D, et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res 1996;63:77–82.

    Article  PubMed  CAS  Google Scholar 

  152. Horowitz JR, Rivard A, van der Zee R, et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Arterioscler Thromb Vasc Biol 1997;17:2793–2800.

    PubMed  CAS  Google Scholar 

  153. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999;286:2511–2514.

    Article  PubMed  CAS  Google Scholar 

  154. Rajagopalan S, Mohler ER 3rd, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003;108:1933–1938.

    Article  PubMed  CAS  Google Scholar 

  155. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  156. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluids of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  157. Vale PR, Rauh G, Wuensch DI, Pieczek A, Schainfeld RM. Influence of vascular endothelial growth factor on diabetic retinopathy. Circulation 1998;17:I–353.

    Google Scholar 

  158. Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 1999;99:1726–1732.

    PubMed  CAS  Google Scholar 

  159. Van Belle E, Tio F, Couffinhal T, Maillard L, Passeri J, Isner JM. Stent endothelialization: time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation 1996;94:I–259.

    Google Scholar 

  160. Van Belle E, Tio FO, Chen D, Maillard L, Kearney M, Isner JM. Passivation of metallic stents following arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. J Am Coll Cardiol 1997;29:1371–1379.

    Article  PubMed  Google Scholar 

  161. Kawamoto A, Murayama T, Kusano K, et al. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 2004;110:1398–1405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shah, P.B., Losordo, D.W. (2007). Angiogenesis. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_83

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_83

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics