Skip to main content

Therapeutic Angiogenesis for the Heart

  • Chapter
The New Angiotherapy

Abstract

Angiogenesis takes place in many different organ systems and circumstances. Angiogenesis can be an essential part of a physiological process or it may contribute to pathological processes, as extensively described in other chapters of this book. In the developing heart, angiogenesis is — in addition to vasculogenesis, the formation of vascular structures out of angioblasts — an important process providing this highly perfused organ with a sufficient vascular network in order to fulfill its high metabolic requirements. Not only in the developing heart, but also in the adult heart, vascular growth, i.e. proliferation of vascular cells, can be observed as well, as demonstrated by the pioneering work of Schaper and coworkers (1). Angiogenesis contributes to the formation of collaterals as does the process of arteriogenesis, i.e., the formation of arteries out of pre-existing arterioles (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaper, W., DeBrabander, M., and Lewi, P. (1971) DNA-synthesis and mitoses in coronary collateral vessels in the dog. Circ. Res. 28, 671–679.

    Article  PubMed  CAS  Google Scholar 

  2. Ito, W. D., Anas, M., Scholz, D., Winkler, B., Htun, P., and Schaper, W. (1997) Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am. J. Physiol. 42, H1255 - H1265.

    Google Scholar 

  3. Heusch, G. (1991) The relationship between regional blood flow and contractile function in normal, ischemic, and reperfused myocardium. Basic Res. Cardiol. 86, 197–218.

    Article  PubMed  CAS  Google Scholar 

  4. Schaper, W. and Ito, W. D. (1996) Molecular mechanisms of coronary collateral vessel growth. Circ. Res. 79, 911–919.

    Article  PubMed  CAS  Google Scholar 

  5. Geninsi, G. G. and DaCosta, B. C. (1969) The coronary collateral circulation in living man. Am. J. Cardiol. 24, 394–400.

    Google Scholar 

  6. Helfant, R. H., Vokonas, P. S., and Gorlin, R. (1971) Functional importance of the human coronary collateral circulation. N. Engl. J. Med. 284, 1277–1281.

    Article  PubMed  CAS  Google Scholar 

  7. Rentrop, K. P., Feit, F., Sherman, W., and Thornton, J. C. (1989) Serial angiographic assessment of coronary artery obstruction and collateral flow in myocardial infarction. Report from the second Mount Sinai–New York University Reperfusion Trial. Circulation 80, 1166–1175.

    Google Scholar 

  8. Sabia, P. J., Powers, E. R., Ragosta, M., Sarembock, I. J., Burwell, L. R., and Kaul, S. (1992) An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N. Engl. J. Med. 327, 1825–1831.

    Google Scholar 

  9. Bach, R. G., Donohue, T. J., Caracciolo, E. A., Wolford, T., Aguirre, F. V., and Kern, M. J. (1996) Quantification of collateral blood flow during PTCA by intravascular ultrasound. Eur. Heart J. 16 (Suppl. J), 74–77.

    Article  Google Scholar 

  10. Piek, J. J., van Liebergen, R. A. M., Koch, K. T., Peters, R. J. G., and David, G. K. (1997) Clinical, angiographic and hemodynamic predictors of recruitable collateral flow assessed during balloon angioplasty coronary occlusion. J. Am. Coll. Cardiol. 29, 275–282.

    Google Scholar 

  11. Waltenberger, J. (1997) Modulation of growth factor action. Implications for the treatment of cardiovascular diseases. Circulation 96, 4083–4095.

    Article  PubMed  CAS  Google Scholar 

  12. Waltenberger, J. (1998) Therapeutic angiogenesis in the heart using peptide growth factors: Angiogenesis research entering clinical trials. Angiogenesis 2, 115–117.

    Article  Google Scholar 

  13. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  14. Landau, C., Lange, R. A., and Hillis, L. D. (1994) Medical progress: percutaneous transluminal coronary angioplasty. N. Engl. J. Med. 330, 981–993.

    Article  PubMed  CAS  Google Scholar 

  15. Favaloro, R. G. (1969) Saphenous vein graft in the surgical treatment of coronary artery disease. J. Thorac. Cardiovasc. Surg. 41, 178–185.

    Google Scholar 

  16. Kolessov, V. I. (1967) Mammary artery-coronary artery anastomosis as method of treatment for angina pectoris. J. Thorac. Cardiovasc. Surg. 54, 535–544.

    PubMed  CAS  Google Scholar 

  17. The GUSTO Angiographic Investigators (1993) The effect of tissue plasminogen activator, streptokinase, or both on coronary patency, ventricular function and survival after acute myocardial infarction. N. Engl. J. Med. 329, 1615–1622.

    Article  Google Scholar 

  18. Spalteholz, W. (1907) Die Coronararterien des Herzens. Verh. Anat. Ges. 21, 141–153.

    Google Scholar 

  19. Gregg, D. E., Thornton, J. J., and Mautz, F. R. (1939) The magnitude, adequacy and source of the collateral blood flow and pressure in chronicallyoccluded coronary arteries. Am. J. Physiol. 127, 161–175.

    Google Scholar 

  20. Blumgart, H. L., Schlesinger, M. J., and Davis, D. (1940) Studies on the relation of the clinical manifestation of angina pectoris, coronary thrombosis, and myocardial infarction to the pathologic findings: with particular reference to the significance of the collateral circulation Am. Heart J. 19, 1–91.

    Article  Google Scholar 

  21. Eckstein, R., Gregg, D., and Pritchard, H. (1941) Am. J. Physiol. 132, 351–361.

    Google Scholar 

  22. Wiggers, C. J. (1952) The functional importance of coronary collaterals. Circulation 5, 609–615.

    Article  PubMed  CAS  Google Scholar 

  23. Kattus, A. A. and Gregg, D. E. (1959) Some determinants of coronary collateral blood flow in the open-chest dog. Circ. Res. 7, 628–642.

    Article  PubMed  CAS  Google Scholar 

  24. Paulin, S. (1967) Interarterial coronary anastomoses in relation to arterial obstruction demonstrated in coronary arteriography. Invest. Radiol. 2, 147–159.

    Article  Google Scholar 

  25. Habib, G. B., Heibig, J., Forman, S. A., Brown, G. G., Roberts, R., Tenin, M. L., and Bolli, R. (1991) Influence of coronary collateral vessels on myocardial infarct size in humans: results of phase I Thrombolysis In Myocardial Infarction (TIMI) trial. Circulation 83, 739–746.

    Article  PubMed  CAS  Google Scholar 

  26. Hansen, J. F. (1989) Coronary collateral circulation: clinical significance and influence on survival in patients with coronary artery disease. Am. Heart J. 117, 290–295.

    Article  PubMed  CAS  Google Scholar 

  27. Williams, D. O., Amsterdam, E. A., Miller, R. R., and Mason, D. T. (1976) Functional significance of coronary collateral vessels in patients with acute myocardial infarction. Relation to pump performance, cardiogenic shock and survival. Am. J. Cardiol. 37, 345–351.

    Article  PubMed  CAS  Google Scholar 

  28. Sasayama, S. (1994) Effect of coronary collateral circulation on myocardial ischemia and ventricular dysfunction. Cardiovasc. Drug Ther. 8, 327–334.

    Article  Google Scholar 

  29. Bonetti, F., Margonato, A., Mailhac, A., Carandente, O., Cappelletti, A., Ballarotto, C., and Chierchia, S. L. (1992) Coronary collaterals reduce the duration of exercise-induced ischemia by allowing a faster recovery. Am. Heart J. 124, 48–55.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen, M. and Rentrop, K. P. (1986) Limitation of myocardial ischemia by collateral circulation during sudden controlled coronary artery occlusion in human subjects: a prospective study. Circulation 74, 469–476.

    Article  PubMed  CAS  Google Scholar 

  31. Ramanathan, K. B., Wilson, J. L., Ingram, L. A., and Mirvis, D. M. (1995) Effects of immature recruitable collaterals on myocardial blood flow and infarct size after acute coronary occlusion. J. Lab. Clin. Med. 125, 66–71.

    Google Scholar 

  32. Frank, M. W., Harris, K. R., Ahlin, K. A., and Klocke, F. J. (1996) Endothelium-derived relaxing factor (nitric oxide) has a tonic vasodilating action on coronary collateral vessels. J. Am. Coll. Cardiol. 27, 658–663.

    Google Scholar 

  33. Eckstein, R. W. (1957) Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ. Res. 5, 230–235.

    Article  PubMed  CAS  Google Scholar 

  34. Schaper, W. and Schaper, J. (1993) Collateral Circulation: Heart, Brain, Kidney, Limbs. Dordrecht, Kluwer Academic Publishers, Boston.

    Book  Google Scholar 

  35. Litvak, J., Siderides, L. E., and Vineberg, A. M. (1957) Experimental production of coronary artery insufficiency and occlusion. Am. Heart J. 53, 505–518.

    Article  PubMed  CAS  Google Scholar 

  36. Eng, C., Cho, S., Factor, S. M., Sonnenblick, E. H., and Kirk, E. S. (1984) Myocardial micronecrosis produced by microsphere embolization. Role of an a-adrenergic tonic influence on the coronary micro-circulation. Circ. Res. 54, 74–82.

    Google Scholar 

  37. Chilian, W. M., Mass, H. J., Williams, S. E., Layne, S. M., Smith, E. E., and Scheel, K. W. (1990) Microvascular occlusions promote coronary collateral growth. Am. J. Physiol. 258, H1103 - H1111.

    Google Scholar 

  38. Gwirtz, P. A. (1986) Construction and evaluation of a coronary catheter for chronic implantation in dogs. J. Appl. Physiol. 60, 720–726.

    PubMed  CAS  Google Scholar 

  39. Rugh, K. S., Garner, H. E., Hatfield, D. G., and Miramonti, J. R. (1987) Ischaemia induced development of functional coronary collateral circulation in ponies. Cardiovasc. Res. 21, 730–736.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen, M. V., Yipintsoi, T., and Scheuer, J. (1982) Coronary collateral stimulation by exercise in dogs with stenotic coronary arteries. J. Appl. Physiol. 52, 664–671.

    PubMed  CAS  Google Scholar 

  41. Bloor, C. M., White, F. C., and Sanders, T. M. (1984) Effect of exercise on collateral development in myocardial ischemia in pigs. J. Appl. Physiol. 56, 656–665.

    Article  PubMed  CAS  Google Scholar 

  42. Roth, D. M., White, F. C., Nichols, M. L., Dobbs, S. L., Longhurst, J. C., and Bloor, C. M. (1990) Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 82, 1778–1789.

    Google Scholar 

  43. Schaper, W., Sharma, H. S., Quinkler, W., Markert, T., Wünsch, M., and Schaper, J. (1990) Molecular biologic concepts of coronary anastomoses. J. Am. Coll. Cardiol. 15, 513–518.

    Article  PubMed  CAS  Google Scholar 

  44. Schaper, W. (1995) Control of coronary angiogenesis. Eur. Heart J. 16 (Suppl. C), 66–68.

    Article  PubMed  Google Scholar 

  45. White, F. C., Carroll, S. M., Magnet, A., and Bloor, C. M. (1992) Coronary collateral development in swine after coronary artery occlusion. Circ. Res. 71, 1490–1500.

    Article  PubMed  CAS  Google Scholar 

  46. Schaper, J. and Weihrauch, D. (1993) Collateral vessel development in the porcine and canine heart. Morphology revisited, in Collateral Circulation: Heart, Brain, Kidney, Limbs ( Schaper, W. and Schaper, J., eds.), Kluwer Academic Publishers, Boston, pp. 65–102.

    Chapter  Google Scholar 

  47. Dumont, D. J., Fong, G.-H., Puri, M. C., Gradwohl, G. J., Alitalo, D., and Breitman, M. L. (1995) Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev. Dyn. 203, 80–92.

    Google Scholar 

  48. Schaper, W. and Buschmann, I. (1999) Collateral circulation and diabetes (editorial). Circulation 99, 2224–2226.

    Article  PubMed  CAS  Google Scholar 

  49. Kranz, A., Mayr, U., Frank, H., and Waltenberger, J. (1999) The coronary endothelium: a target for VEGF. Human coronary artery endothelial cells express functional receptors for VEGF in vitro and in vivo. Lab. Invest. 79, 985–991.

    CAS  Google Scholar 

  50. Banai, S., Shweiki, D., Pinson, A., Chandra, M., Lazarovici, G., and Keshet, E. (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc. Res. 28, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  51. Kranz, A., Rau, C., Kochs, M., and Waltenberger, J. (2000) Elevation of vascular endothelial growth factor-A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. J. Mol. Cell. Cardiol. im Druck

    Google Scholar 

  52. Li, J., Brown, L. F., Hibberd, M. G., Grossman, J. D., Morgan, J. P., and Simons, M. (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270, H 1803—H 1811.

    Google Scholar 

  53. Waltenberger, J., von Bonin, J., Scheunert, T., Gerber, J., Göller, V., Theiss, A., (1998) Molecular mechanisms of collateral-formation in the ischemic myocardium. Thorac. Cardiovasc. Surg. 46 (Suppl. 1), 184.

    Google Scholar 

  54. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.

    Article  PubMed  CAS  Google Scholar 

  55. Brogi, E., Schatteman, G., Wu, T., Kim, E. A., Varticovski, L., Keyt, B., and Isner, J.M. (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest. 97, 469–476.

    Article  PubMed  CAS  Google Scholar 

  56. Waltenberger, J., Mayr, U., Pentz, S., and Hombach, V. (1996) Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 94, 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  57. Sunderkötter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., and Sorg, C. (1994) Macrophages and angiogenesis. J. Leukocyte Biol. 55, 410–422.

    PubMed  Google Scholar 

  58. Brogi, E., Wu, T., Namiki, A., and Isner, J. M. (1994) Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation 90, 649–652.

    Article  PubMed  CAS  Google Scholar 

  59. Cohen, T., Nahari, D., Cerem, C. W., Neufeld, G., and Levi, B.-Z. (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J. Biol. Chem. 271, 736–741.

    Article  PubMed  CAS  Google Scholar 

  60. Clauss, M., Weich, H., Breier, G., Knies, U., Röckl, W., Waltenberger, J., and Risau, W. (1996) The vascular endothelial growth factor receptor FLT-1 mediates biological activities: Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271, 17,629–17, 634.

    Google Scholar 

  61. Arras, M., Ito, W. D., Scholz, D., Winkler, B., Schaper, J., and Schaper, W. (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50.

    Article  PubMed  CAS  Google Scholar 

  62. Ito, W. D., Arras, M., Winkler, B., Scholz, D., Schaper, J., and Schaper, W. (1997) Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80, 829–837.

    Article  PubMed  CAS  Google Scholar 

  63. Waltenberger, J., Lange, J., and Kranz, A. (2000) Vascular endothelial growth factor-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus. A potential predictor for the individual capacity to develop collaterals. Circulation 101, in press.

    Google Scholar 

  64. Abaci, A., Oguzhan, A., Kahraman, S., Eryol, N.K., Ünal, S., Arinc, H., and Ergin, A. (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99, 2239–2242.

    Article  PubMed  CAS  Google Scholar 

  65. Höckel, M. and Burke, F. J. (1989) Angiotropin treatment prevents flap necrosis and enhances dermal regeneration in rabbits. Arch. Surg. 124, 693–698.

    Article  PubMed  Google Scholar 

  66. Takeshita, S., Zheng, L. P., Brogi, E., Kearney, M., Pu, L.-Q., Bunting, S., (1994) Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. Clin. Invest. 93, 662–670.

    Article  PubMed  CAS  Google Scholar 

  67. Waltenberger, J., Usuki, K., Fellström, B., Funa, K., and Heldin, C.-H. (1992) Platelet-derived endothelial cell growth factor: Pharmacokinetics, organ distribution and degradation after intravenous administration in rats. FEBS Lett. 313, 129–132.

    Article  PubMed  CAS  Google Scholar 

  68. Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., Kamijo, T., (1992) Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401–1403.

    Article  PubMed  CAS  Google Scholar 

  69. Horrigan, M. C. G., MacIsaac, A. I., Nicolini, F. A., Vince, D. G., Lee, P., Ellis, S. G., and Topol, E. J. (1996) Reduction of myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 94, 1927–1933.

    Article  PubMed  CAS  Google Scholar 

  70. Lopez, J. J., Edelman, E. R., Stambler, A., Thomas, K. A., DiSalvo, J., Hibberd, M. G., (1996) Perivascular delivery of prolonged half-life aFGF viaEVAC results in angiographic collateral development, improvement in coronary flow and function in chronic myocardial ischemia. J. Am. Coll. Cardiol. 27, 30A.

    Google Scholar 

  71. Giordano, F. J., Ping, P., McKirnan, M. D., Nozaki, S., DeMaria, A. N., Dillmann, W. H., (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Med. 2, 534–539.

    Article  PubMed  CAS  Google Scholar 

  72. Schumacher, B., Pecher, P., von Specht, B. U., and Stegmann, T. (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors. First clinical results of a new treatment of coronary heart disease. Circulation 97, 645–650.

    Google Scholar 

  73. Ware, J. A. and Simons, M. (1997) Angiogenesis in ischemic heart disease. Inducing the formation of new blood vessels–a novel approach to treating myocardial ischemia. Nature Med. 3, 158–164.

    Article  PubMed  CAS  Google Scholar 

  74. Laham, R. J., Sellke, F. W., Edelman, E. R., Pearlman, J. D., Ware, J. A., Brown, D. L., (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100, 1865–1871.

    Google Scholar 

  75. Henry, T. D., Annex, B. H., Azrin, M. A., McKendall, G., Willerson, J. T., Giordano, F. J., (1999) Final results of the VIVA trial of rhVEGF for human therapeutic angiogenesis. Circulation 101, I-476.

    Google Scholar 

  76. Rosengart, T. K., Lee, L. Y., Patel, S. R., Sanborn, T. A., Parikh, M., Bergman, G. W., (1999) Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF 121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474.

    Google Scholar 

  77. Losordo, D. W., Vale, P. R., Symes, J. F., Dunnington, C. H., Esakof, D. D., Maysky, M., (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF(165) as sole therapy for myocardial ischemia. Circulation 98, 2800–2804.

    Google Scholar 

  78. Beyer, M., Hoffer, H., Eggeling, T., Goertz, A., Mierdl, S., and Hannekum, A. (1992) Cardiomyoplasty to improve myocardial collateral blood supply as an alternative to transplantation in intractable angina. J. Heart Lung Transpl. 11, 189–191.

    Google Scholar 

  79. Beyer, M., Hoffer, H., Eggeling, T., Matt, O., Beyer, U., and Hannekum, A. (1993) Free skeletal muscle transplantation to an infarction area: an experimental study in the dog. Microsurg. 14, 125–129.

    Google Scholar 

  80. Beyer, M., Beyer, U., Mierdl, S., Sirch, J., von Behren, H., and Hannekum, A. (1994) Indirect myocardial revascularization: an experimental study in the dog. Eur. J. Cardiothorac. Surg. 8, 557–562.

    Article  PubMed  CAS  Google Scholar 

  81. Beyer, M., Mierdl, S., Scheunert, T., Schleich, S., Oertel, F., and Hannekum, A. (1996) Erste klinische Erfahrungen mit indirekter Myokardrevaskularisation–freie Skelettmuskeltransplantation zur Induktion epi-myokardialer Gefäßeinsprosung. Z. Kardiol. 85 (Suppl. 4), 29–33.

    Google Scholar 

  82. Beyer, M., Hoffer, H., Matt, O., Hemmer, W., and Hannekum, A. (1993) Myocardial revascularization with a free skeletal muscle transplant: a functional analysis of angiogenesis. Vasa 22, 113–119.

    PubMed  CAS  Google Scholar 

  83. Mannion, J. D., Blood, V., Bailey, W., Bauer, T. L., Magno, M. G., DiMeo, F., (1996) The effect of basic fibroblast growth factor on the blood flow and morphologic features of a latissimus dorsi cardiomyoplasty. J. Thorac. Cardiovasc. Surg. 111, 19–28.

    Google Scholar 

  84. Vineberg, A. M. (1947) Development of an anastomosis between the coronary vessels and a transplanted internal mammary artery. Can. Med. Assoc. J. 56, 609–614.

    Google Scholar 

  85. Shrager, J. B. (1994) The Vineberg procedure: the immediate forerunner of coronary artery bypass grafting. Ann. Thorac. Surg. 57, 1354–1364.

    Google Scholar 

  86. Shrager, J. B. (1994) The Vineberg procedure: reply. Ann. Thorac. Surg. 57, 1794.

    Article  Google Scholar 

  87. Schofield, P. M., Sharples, L. D., Caine, N., Burns, S., Tait, S., Wistow, T., (1999) Transmyocardial laser revascularisation in patients with refractory angina• a randomised controlled trial. Lancet353, 519–524.

    Google Scholar 

  88. Lauer, B., Junghans, U., Stahl, F., Kluge, R., Oesterle, S. N., and Schuler, G. (1999) Catheter-based percutaneous myocardial laser revascularization in patients with end-stage coronary artery disease. J. Am. Coll. Cardiol. 34, 1663–1670.

    Article  PubMed  CAS  Google Scholar 

  89. Burkhoff, D., Schmidt, S., Schulman, S. P., Myers, J., Resar, J., Becker, L. C., (1999) Transmyocardial laser revascularisation compared with continued medical therapy for treatment of refractory angina pectoris: a prospective randomised trial. Lancet 354, 885–890.

    Google Scholar 

  90. Gassler, N., Rastar, F., and Hentz, M. W. (1999) Angiogenesis and expression of tenascin after trans-mural laser revascularization. Histol. Histopathol. 14, 81–87.

    PubMed  CAS  Google Scholar 

  91. Chu, V., Kuang, J., McGinn, A., Giaid, A., Korkola, S., and Chiu, R. C. (1999) Angiogenic response induced by mechanical transmyocardial revascularization. J. Thorac. Cardiovasc. Surg. 118, 849–856.

    Google Scholar 

  92. Bauters, C., Asahara, T., Zheng, L. P., Takeshita, S., Bunting, S., Ferrara, N., (1995) Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J. Vasc. Surg. 21, 314–325.

    Google Scholar 

  93. Waltenberger, J., Gürtler, R., Frank, H., Böhmer, F., and Hombach, V. (1996) Elevated glucose concentrations impair the endothelial response to vascular endothelial growth factor. A potential mechanism leading to endothelial dysfunction in diabetes mellitus. Circulation 94(Suppl.), I-230.

    Google Scholar 

  94. Lindner, V. and Reidy, M. A. (1991) Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88, 3739–3743.

    Article  PubMed  CAS  Google Scholar 

  95. Edelman, E. R., Nugent, M. A., Smith, L. T., and Karnovsky, M. J. (1992) Basic fibroblast growth factor enhances the coupling of intimai hyperplasia and proliferation of vasa vasorum in injured rat arteries. J. Clin. Invest. 89, 465–473.

    Article  PubMed  CAS  Google Scholar 

  96. Lazarous, D. F., Shou, M., Scheinowitz, M., Hodge, E., Thirumurti, V., Kitsiou, A. N., (1996) Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94, 1074–1082.

    Article  PubMed  CAS  Google Scholar 

  97. Battler, A., Scheinowitz, M., Bor, A., Hasdai, D., Vered, Z., DiSegni, E., (1993) Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J. Am. Coll. Cardiol. 22, 2001–2006.

    Google Scholar 

  98. Harada, K., Grossman, W., Friedman, M, Edelman, E. R., Prasad, P. V., Keighley, C. S., (1994) Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J. Clin. Invest. 94, 623–630.

    Google Scholar 

  99. Uchida, Y., Yanagisawa-Miwa, A., Ikuta, M., Makamura, F., Tomaru, T., Fujimori, Y., and Morita, T. (1994) Angiogenic therapy of acute myocardial infarction (AMI) by intrapericardial injection of basic fibroblast growth factor (bFGF) and haparan sulfate (HS): an experimental study. Circulation 90,1–296.

    Google Scholar 

  100. Unger, E. F., Banal, S., Shou, M., Lazarous, D. F., Jaklitsch, M. T., Scheinowitz, M.,(1994) Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 35, H1588 — H1595.

    Google Scholar 

  101. Lazarous, D. F., Scheinowitz, M., Shou, M., Hodge, E., Rajanayagam, M. A. S., Hunsberger, S., (1995) Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91, 145–153.

    Article  PubMed  CAS  Google Scholar 

  102. Barrios, V., Cuevas, B., Carceller, F., Asin, E., Jiménez, J.J., Navarro, J., (1995) Angiogenesis in the rat heart induced by local delivery of basic fibroblast growth factor. Eur. Heart J. 16 (Abstract Suppl.), 171.

    Google Scholar 

  103. Banal, S., Jaklitsch, M. T., Casscells, W., Shou, M., Shrivastav, S., Correa, R., (1991) Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ. Res. 69, 76–85.

    Google Scholar 

  104. Sellke, F. W., Li, J, Stamler, A., Lopez, J. J., Thomas, K. A., and Simons, M. (1996) Angiogenesis induced by acidic fibroblast growth factor as an alternative method of revascularization for chronic myocardial ischemia. Surgery 120, 182–188.

    Article  PubMed  CAS  Google Scholar 

  105. Banai, S, Jaklitsch, M. T., Shou, M., Lazarous, D. F., Scheinowitz, M., Biro, S., (1994) Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183–2189.

    Article  PubMed  CAS  Google Scholar 

  106. Pearlman, J. D., Hibberd, M. G., Chuang, M. L., Harada, K., Lopez, J. J., Gladstone, S. R., (1995) Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nature Med. 1, 1085–1089.

    Google Scholar 

  107. Harada, K., Friedman, M., Lopez, J. J., Wang, S. Y., Li, J., Prasad, P. V.,(1996) Vascular endothelial growth factor administration in chronic myocardial ischemia. Am. J. Physiol. 270, H1791 - H1802.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waltenberger, J., Hombach, V. (2002). Therapeutic Angiogenesis for the Heart. In: Fan, TP.D., Kohn, E.C. (eds) The New Angiotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-126-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-126-8_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9657-4

  • Online ISBN: 978-1-59259-126-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics