Skip to main content

Ligand Engineering via Yeast Surface Display and Adherent Cell Panning

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2070))

Abstract

High-throughput ligand discovery and evolution—via genotype-phenotype linkage strategies—empower molecularly targeted therapy, diagnostics, and fundamental science. Maintaining high-quality target antigen in these selections, particularly for membrane targets, is often a technical challenge. Panning yeast-displayed ligand libraries on intact mammalian cells expressing the molecular target has emerged as an effective strategy. Herein we describe the techniques used to select target-binding ligands via this approach including the use of target-negative cells to deplete non-specific binders and avidity reduction to preferentially select high-affinity ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  CAS  PubMed  Google Scholar 

  2. Dijkstra S, Mulders PFA, Schalken JA (2014) Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin Biochem 47:889–896

    Article  CAS  PubMed  Google Scholar 

  3. Husseinzadeh N (2011) Status of tumor markers in epithelial ovarian cancer has there been any progress? A review. Gynecol Oncol 120:152–157

    Article  CAS  PubMed  Google Scholar 

  4. Yotsukura S, Mamitsuka H (2015) Evaluation of serum-based cancer biomarkers: a brief review from a clinical and computational viewpoint. Crit Rev Oncol Hematol 93:103–115

    Article  PubMed  Google Scholar 

  5. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  CAS  PubMed  Google Scholar 

  6. Mäbert K, Cojoc M, Peitzsch C et al (2014) Cancer biomarker discovery: current status and future perspectives. Int J Radiat Biol 90:659–677

    Article  PubMed  CAS  Google Scholar 

  7. Zahnd C, Amstutz P, Plückthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4:269–279

    Article  CAS  PubMed  Google Scholar 

  8. Mattheakis LC, Bhatt RR, Dower W (2012) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci 91:9022:9026

    Article  CAS  Google Scholar 

  9. Dreier B, Pluckthun A (2012) Rapid selection of high affinity binders using ribosome display. Methods Mol Biol 805:261-286

    Google Scholar 

  10. Josephson K, Ricardo A, Szostak JW (2014) MRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today 19:388–399

    Article  CAS  PubMed  Google Scholar 

  11. Lipovsek D, Plückthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67

    Article  CAS  PubMed  Google Scholar 

  12. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci 94:12297–12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the viron surface. Science (80) 228:1315–1317

    Article  CAS  Google Scholar 

  14. Bratkovic T (2010) Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 67:749–767

    Article  CAS  PubMed  Google Scholar 

  15. Sidhu SS, Lowman HB, Cunningham BC et al (2000) Phage display for selection of novel binding peptides. Methods Enzymol 328:333–363

    Google Scholar 

  16. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  PubMed  Google Scholar 

  17. Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho M, Pastan I (2009) Mammalian cell display for antibody engineering. Methods Mol Biol 525:337–351

    Google Scholar 

  19. Beerli RR, Bauer M, Buser RB et al (2008) Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 105:14336–14341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowley DR, Labrijn AF, Zwick MB et al (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90

    Article  CAS  PubMed  Google Scholar 

  21. Shusta EV, Kieke MC, Parke E et al (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956

    Article  CAS  PubMed  Google Scholar 

  22. Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32:e36

    Article  CAS  Google Scholar 

  23. Ackerman M, Levary D, Tobon G et al (2009) Highly avid magnetic bead capture: an efficient selection method for de novo protein engineering utilizing yeast surface display. Biotechnol Prog 25:774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen TF, de Picciotto PS, Hackel BJ et al (2013) Engineering fibronectin-based binding proteins by yeast surface display. Methods Enzymol 523:303–326

    Google Scholar 

  25. Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60:15–26

    Article  CAS  PubMed  Google Scholar 

  26. Friedman M, Nordberg E, Höidén-Guthenberg I et al (2007) Phage display selection of affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel 20:189–199

    Article  CAS  PubMed  Google Scholar 

  27. Stefan N, Martin-Killias P, Wyss-Stoeckle S et al (2011) DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J Mol Biol 413:826–843

    Article  CAS  PubMed  Google Scholar 

  28. Kruziki MA, Bhatnagar S, Woldring DR et al (2015) A 45-amino-acid scaffold mined from the PDB for high-affinity ligand engineering. Chem Biol 22:946–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hackel BJ, Ackerman ME, Howland SW et al (2010) Stability and CDR composition biases enrich binder functionality landscapes. J Mol Biol 401:84–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Horak E, Heitner T, Robinson MK et al (2005) Isolation of scFvs to in vitro produced extracellular domains of EGFR family members. Cancer Biother Radiopharm 20:603–613

    Article  CAS  PubMed  Google Scholar 

  31. Zielonka S, Weber N, Becker S et al (2014) Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245

    Article  CAS  PubMed  Google Scholar 

  32. Iwasaki K, Goto Y, Katoh T et al (2015) A fluorescent imaging probe based on a macrocyclic scaffold that binds to cellular EpCAM. J Mol Evol 81:210–217

    Article  CAS  PubMed  Google Scholar 

  33. Mazzei GJ, Edgerton MD, Losberger C et al (1995) Recombinant soluble trimeric CD40 ligand is biologically active. J Biol Chem 270:7025–7028

    Article  CAS  PubMed  Google Scholar 

  34. Singer E, Landgraf R, Horan T et al (2001) Identification of a heregulin binding site in HER3 extracellular domain. J Biol Chem 276:44266–44274

    Article  CAS  PubMed  Google Scholar 

  35. Stern LA, Lown PS, Kobe AC et al (2019) Cellular-based selections aid yeast-display discovery of genuine cell-binding ligands: targeting oncology vascular biomarker CD276. ACS Comb Sci 21:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zorniak M, Clark PA, Umlauf BJ, et al (2017) Yeast display biopanning identifies human antibodies targeting glioblastoma stemlike cells. Sci Rep 7:1–12

    Google Scholar 

  37. Tillotson BJ, Cho YK, Shusta EV. (2013) Cells and cell lysates: A direct approach for engineering antibodies against membrane proteins using yeast surface display. Methods 60:27–37

    Article  CAS  PubMed  Google Scholar 

  38. Williams RM, Hajiran CJ, Nayeem S, Sooter LJ (2014) Identification of an antibody fragment specific for androgen-dependentprostate cancer cells. BMC Biotechnol 14:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dangaj D, Lanitis E, Zhao A, et al (2013) Novel recombinant human B7-H4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res 73:4820–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang XX, Cho YK, Shusta E V (2007) Mining a yeast library for brain endothelial cell-binding antibodies. Nat Methods 4:143–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang XX, Shusta E V (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304:30–42

    Article  CAS  PubMed  Google Scholar 

  42. Even-desrumeaux K, Chames P (2012) Phage Display and Selections in Cells. In: Antibody Engineering. pp 225–235

    Chapter  Google Scholar 

  43. Watters JM, Telleman P, Junghans RP (1997) An optimized method for cell-based phage display panning. Immunotechnology 3:21–29

    Article  CAS  PubMed  Google Scholar 

  44. Jones AR, Stutz CC, Zhou Y, et al (2014) Identifying blood-brain-barrier selective single-chain antibody fragments. Biotechnol J 9:664–674

    Google Scholar 

  45. Newton J and Deutscher SL (2008) Phage peptide display. in Handbook of Experimental Pharmacology 145–163

    Chapter  Google Scholar 

  46. Sanchez-Martin D, Sorensen MD, Lykkemark S, et al (2015) Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends Biotechnol 33:292–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Stern LA, Schrack IA, Johnson SM et al (2016) Geometry and expression enhance enrichment of functional yeast-displayed ligands via cell panning. Biotechnol Bioeng 113:2328–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watters JM, Telleman P, Junghans RP (1997) An optimized method for cell-based phage display panning. Immunotechnology 3:21–29

    Article  CAS  PubMed  Google Scholar 

  49. Stern LA, Csizmar CM, Woldring DR et al (2017) Titratable avidity reduction enhances affinity discrimination in mammalian cellular selections of yeast-displayed ligands ACS Comb Sci. 19(5):315–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Even-Desrumeaux K, Chames P (2012) Phage display and selections in cells. Methods Mol Biol 907:225–235

    Article  CAS  PubMed  Google Scholar 

  51. Patrick WM, Firth AE, Blackburn JM (2003) User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng Des Sel 16:451–457

    Article  CAS  Google Scholar 

  52. Stevens R, Stevens L, Price N (1983) The stabilities of various thiol compounds used in protein purifications. Biochem Educ 11:70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter describes work funded by the American Cancer Society (130418-RSG-17-110-01-TBG to B.J.H.), the National Institutes of Health (R01 EB023339 to B.J.H.), and the California Tobacco-Related Disease Research Grants Program Office of the University of California (28FT-0072 to L.A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Hackel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stern, L.A., Lown, P.S., Hackel, B.J. (2020). Ligand Engineering via Yeast Surface Display and Adherent Cell Panning. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics