Skip to main content

Flow Cytometric Evaluation of Crude Synaptosome Preparation as a Way to Study Synaptic Alteration in Neurodegenerative Diseases

  • Protocol
  • First Online:
Synaptosomes

Part of the book series: Neuromethods ((NM,volume 141))

Abstract

Neurodegenerative diseases, the most common among them Alzheimer’s disease (AD) and Lewy body disease (LBD), are a group of progressive incurable illnesses. In both AD and LBD, abundant evidence points to the synapse as the critical and early focus of pathological changes. Here we present a method for the isolation and flow cytometric analysis of synaptosomes prepared from postmortem human brain tissue, which we also applied to animal models, including mice and nonhuman primates. The use of flow cytometry for analysis allows for relatively fast and efficient examination of thousands of synaptosome particles in a matter of minutes, and also makes it possible to use crude, rather than purified, synaptosomal preparation, thus conserving tissue resources. We have applied this method to study synaptic alteration in several brain regions in human research participants and animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314(5800):777–781

    Article  CAS  Google Scholar 

  2. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3(77):77sr1

    Article  Google Scholar 

  3. Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247(Suppl 2):II3–I10

    PubMed  Google Scholar 

  4. Burre J et al (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667

    Article  CAS  Google Scholar 

  5. Ingelsson M (2016) Alpha-Synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci 10:408

    Article  Google Scholar 

  6. Li JY, Plomann M, Brundin P (2003) Huntington’s disease: a synaptopathy? Trends Mol Med 9(10):414–420

    Article  CAS  Google Scholar 

  7. Koffie RM, Hyman BT, Spires-Jones TL (2011) Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6(1):63

    Article  Google Scholar 

  8. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  CAS  Google Scholar 

  9. Davies CA et al (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78(2):151–164

    Article  CAS  Google Scholar 

  10. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464

    Article  CAS  Google Scholar 

  11. Masliah E (2001) Recent advances in the understanding of the role of synaptic proteins in Alzheimer’s disease and other neurodegenerative disorders. J Alzheimers Dis 3(1):121–129

    Article  CAS  Google Scholar 

  12. Scheff SW et al (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18):1501–1508

    Article  CAS  Google Scholar 

  13. Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    Article  CAS  Google Scholar 

  14. Masliah E et al (1994) Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett 174(1):67–72

    Article  CAS  Google Scholar 

  15. Koffie RM et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106(10):4012–4017

    Article  CAS  Google Scholar 

  16. Meyer-Luehmann M et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724

    Article  CAS  Google Scholar 

  17. Serrano-Pozo A et al (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189

    Article  Google Scholar 

  18. Spires TL et al (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25(31):7278–7287

    Article  CAS  Google Scholar 

  19. Stern EA et al (2004) Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 24(19):4535–4540

    Article  CAS  Google Scholar 

  20. Urbanc B et al (2002) Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer’s disease. Proc Natl Acad Sci U S A 99(22):13990–13995

    Article  CAS  Google Scholar 

  21. Woodhouse A et al (2005) Does beta-amyloid plaque formation cause structural injury to neuronal processes? Neurotox Res 7(1–2):5–15

    Article  CAS  Google Scholar 

  22. Roher AE et al (1996) Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271(34):20631–20635

    Article  CAS  Google Scholar 

  23. Walsh DM et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    Article  CAS  Google Scholar 

  24. Wang HY et al (2000) Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75(3):1155–1161

    Article  CAS  Google Scholar 

  25. Shankar GM et al (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875

    Article  CAS  Google Scholar 

  26. Lesne S et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357

    Article  CAS  Google Scholar 

  27. Shankar GM et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    Article  CAS  Google Scholar 

  28. Klein WL (2006) Synaptic targeting by a beta oligomers (ADDLS) as a basis for memory loss in early Alzheimer’s disease. Alzheimers Dement 2(1):43–55

    Article  Google Scholar 

  29. Lambert MP et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  CAS  Google Scholar 

  30. Viola KL, Klein WL (2015) Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206

    Article  CAS  Google Scholar 

  31. Katsuse O et al (2006) Neurofibrillary tangle-related synaptic alterations of spinal motor neurons of P301L tau transgenic mice. Neurosci Lett 409(2):95–99

    Article  CAS  Google Scholar 

  32. Ginsberg SD et al (2000) Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons. Ann Neurol 48(1):77–87

    Article  CAS  Google Scholar 

  33. Callahan LM, Vaules WA, Coleman PD (1999) Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J Neuropathol Exp Neurol 58(3):275–287

    Article  CAS  Google Scholar 

  34. Kopeikina KJ, Hyman BT, Spires-Jones TL (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Transl Neurosci 3(3):223–233

    Article  Google Scholar 

  35. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771

    Article  CAS  Google Scholar 

  36. Roberson ED et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31(2):700–711

    Article  CAS  Google Scholar 

  37. Nisbet RM et al (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129(2):207–220

    Article  CAS  Google Scholar 

  38. Ittner LM et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397

    Article  CAS  Google Scholar 

  39. Ittner LM, Gotz J (2011) Amyloid-beta and tau--a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72

    Article  CAS  Google Scholar 

  40. Crimins JL et al (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev 12(3):757–763

    Article  CAS  Google Scholar 

  41. Zaltieri M et al (2015) Alpha-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. J Cell Sci 128(13):2231–2243

    Article  CAS  Google Scholar 

  42. Tsigelny IF et al (2012) Role of alpha-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J 279(6):1000–1013

    Article  CAS  Google Scholar 

  43. Uversky VN et al (2001) Stabilization of partially folded conformation during alpha-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276(47):43495–43498

    Article  CAS  Google Scholar 

  44. Hunn J et al (2015) Patterns and utility of routine surveillance in high grade endometrial cancer. Gynecol Oncol 137(3):485–489

    Article  Google Scholar 

  45. Diogenes MJ et al (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32(34):11750–11762

    Article  CAS  Google Scholar 

  46. Janezic S et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110(42):E4016–E4025

    Article  CAS  Google Scholar 

  47. Rockenstein E et al (2014) Accumulation of oligomer-prone alpha-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain 137(Pt 5):1496–1513

    Article  Google Scholar 

  48. Nemani VM et al (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  CAS  Google Scholar 

  49. Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41(14):4595–4602

    Article  CAS  Google Scholar 

  50. Chen MK et al (2008) VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem 105(1):78–90

    Article  CAS  Google Scholar 

  51. Masoud ST et al (2015) Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis 74:66–75

    Article  CAS  Google Scholar 

  52. Mosharov EV et al (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62(2):218–229

    Article  CAS  Google Scholar 

  53. Plowey ED, Chu CT (2011) Synaptic dysfunction in genetic models of Parkinson’s disease: a role for autophagy? Neurobiol Dis 43(1):60–67

    Article  CAS  Google Scholar 

  54. Meinertzhagen IA et al (2009) From form to function: the ways to know a neuron. J Neurogenet 23(1–2):68–77

    Article  CAS  Google Scholar 

  55. Whittaker VP (1993) Thirty years of synaptosome research. J Neurocytol 22(9):735–742

    Article  CAS  Google Scholar 

  56. Whittaker VP (1959) The isolation and characterization of acetylcholine-containing particles from brain. Biochem J 72:694–706

    Article  CAS  Google Scholar 

  57. Gylys KH, Fein JA, Cole GM (2000) Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J Neurosci Res 61(2):186–192

    Article  CAS  Google Scholar 

  58. Sokolow S et al (2012) Isolation of synaptic terminals from Alzheimer’s disease cortex. Cytometry A 81(3):248–254

    Article  Google Scholar 

  59. Sokolow S et al (2012) AD synapses contain abundant Abeta monomer and multiple soluble oligomers, including a 56-kDa assembly. Neurobiol Aging 33(8):1545–1555

    Article  CAS  Google Scholar 

  60. Sokolow S et al (2015) Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem 133(3):368–379

    Article  CAS  Google Scholar 

  61. Bilousova T et al (2016) Synaptic amyloid-beta oligomers precede p-Tau and differentiate high pathology control cases. Am J Pathol 186(1):185–198

    Article  CAS  Google Scholar 

  62. Postupna NO et al (2014) Flow cytometry analysis of synaptosomes from post-mortem human brain reveals changes specific to Lewy body and Alzheimer’s disease. Lab Investig 94(10):1161–1172

    Article  CAS  Google Scholar 

  63. Postupna NO et al (2017) Human striatal dopaminergic and regional serotonergic synaptic degeneration with Lewy body disease and inheritance of APOE ε4. Am J Pathol 187:884

    Article  CAS  Google Scholar 

  64. Chandler WL, Yeung W, Tait JF (2011) A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost 9(6):1216–1224

    Article  CAS  Google Scholar 

  65. Sokolow S et al (2012) Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer’s disease cortex. Neurobiol Dis 45(1):381–387

    Article  CAS  Google Scholar 

  66. Morgan RG et al (2015) Relative contributions of severe dopaminergic neuron ablation and dopamine depletion to cognitive impairment. Exp Neurol 271:205–214

    Article  CAS  Google Scholar 

  67. Henschen CW, Palmiter RD, Darvas M (2013) Restoration of dopamine signaling to the dorsal striatum is sufficient for aspects of active maternal behavior in female mice. Endocrinology 154(11):4316–4327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Emily Sherfield, Julie Paladin, Samantha Rice, Leanne Hellstern, Erica Melief, and Allison Beller. Parts of the work presented in this chapter were supported by grants from the NIH: University of Washington Alzheimer’s Disease Research Center (ADRC) P50 AG05136, Stanford ADRC P50 AG047366, and the Pacific Udall Center P50 NS062684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Darvas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Postupna, N.O., Latimer, C.S., Dirk Keene, C., Montine, K.S., Montine, T.J., Darvas, M. (2018). Flow Cytometric Evaluation of Crude Synaptosome Preparation as a Way to Study Synaptic Alteration in Neurodegenerative Diseases. In: Murphy, K. (eds) Synaptosomes. Neuromethods, vol 141. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8739-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8739-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8738-2

  • Online ISBN: 978-1-4939-8739-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics