Skip to main content

Nucleoside Modified mRNA Vaccines for Infectious Diseases

  • Protocol
  • First Online:
RNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1499))

Abstract

In recent years, numerous studies have demonstrated the outstanding abilities of mRNA to elicit potent immune responses against pathogens, making it a viable new platform for vaccine development (reviewed in Weissman, Expert Rev Vaccines 14:265–281, 2015; Sahin et al., Nat Rev Drug Discov 13:759–780, 2014). The incorporation of modified nucleosides in mRNA has many advantages and is currently undergoing a renaissance in the field of therapeutic protein delivery. Its use in a vaccine against infectious diseases has only begun to be described, but offers advantages for the generation of potent and long-lived antibody responses. FPLC purification and substitution of modified nucleosides in the mRNA make it non-inflammatory and highly translatable (Kariko et al., Immunity 23:165–175, 2005; Kariko et al., Mol Ther 16:1833–1840, 2008; Kariko et al., Nucleic Acids Research 39:e142, 2011) that are crucial features for therapeutic relevance. Formulation of the mRNA in lipid nanoparticles (LNPs) protects it from degradation enabling high levels of protein production for extended periods of time (Pardi et al., J Control Release, 2015). Here, we describe a simple vaccination method using LNP-encapsulated 1-methylpseudouridine-containing FPLC purified mRNA in mice. Furthermore, we describe the evaluation of antigen-specific T and B cell responses elicited by this vaccine format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang B, Jeang J, Yang A et al (2014) DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 10:3153–3164

    Article  PubMed  Google Scholar 

  2. Villarreal DO, Talbott KT, Choo DK et al (2013) Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 12:537–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petsch B, Schnee M, Vogel AB et al (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30:1210–1216

    Article  CAS  PubMed  Google Scholar 

  4. Geall AJ, Verma A, Otten GR et al (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A 109:14604–14609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hekele A, Bertholet S, Archer J et al (2013) Rapidly produced SAM((R)) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2:e52

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brito LA, Chan M, Shaw CA et al (2014) A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 22:2118–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bogers WM, Oostermeijer H, Mooij P et al (2015) Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 211:947–955

    Article  PubMed  Google Scholar 

  8. Routy JP, Boulassel MR, Yassine-Diab B et al (2010) Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 134:140–147

    Article  CAS  PubMed  Google Scholar 

  9. Van Gulck E, Vlieghe E, Vekemans M et al (2012) mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26:F1–F12

    Article  PubMed  Google Scholar 

  10. Allard SD, De Keersmaecker B, de Goede AL et al (2012) A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 142:252–268

    Article  CAS  PubMed  Google Scholar 

  11. Kariko K, Buckstein M, Ni H et al (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  PubMed  Google Scholar 

  12. Kariko K, Muramatsu H, Welsh FA et al (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kariko K, Muramatsu H, Ludwig J et al (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pardi N, Tuyishime S, Muramatsu H et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. doi:10.1016/j.jconrel.2015.08.007

    PubMed  PubMed Central  Google Scholar 

  15. Klechevsky E (2013) Human dendritic cells - stars in the skin. Eur J Immunol 43:3147–3155

    Article  CAS  PubMed  Google Scholar 

  16. Pardi N, Muramatsu H, Weissman D et al (2013) In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol 969:29–42

    Article  CAS  PubMed  Google Scholar 

  17. Weissman D, Pardi N, Muramatsu H et al (2013) HPLC purification of in vitro transcribed long RNA. Methods Mol Biol 969:43–54

    Article  CAS  PubMed  Google Scholar 

  18. Semple SC, Akinc A, Chen J et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28:172–176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew Weissman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pardi, N., Weissman, D. (2017). Nucleoside Modified mRNA Vaccines for Infectious Diseases. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics