Skip to main content

HPLC Purification of In Vitro Transcribed Long RNA

  • Protocol
  • First Online:
Synthetic Messenger RNA and Cell Metabolism Modulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

In vitro transcription of DNA with phage RNA polymerases is currently the most efficient method to produce long sequence-specific RNA. While the reaction can yield large quantities of RNA, it contains impurities due to various unwanted activities of the polymerases. Here, we described an easily performed HPLC purification that removes multiple contaminants from in vitro transcribed RNA and is scalable. The purified RNA is translated at much greater levels, especially in primary cells and in vivo. HPLC purification of RNA containing modified nucleosides that suppress RNA-mediated activation of innate immune sensors leads to a non-immunogenic RNA with superior translational capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE (1992) Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255:996–998

    Article  PubMed  CAS  Google Scholar 

  2. Angel M, Yanik MF (2010) Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One 5:e11756

    Article  PubMed  Google Scholar 

  3. Yakubov E, Rechavi G, Rozenblatt S, Givol D (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 394:189–193

    Article  PubMed  CAS  Google Scholar 

  4. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  PubMed  CAS  Google Scholar 

  5. Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29:154–157

    Article  PubMed  CAS  Google Scholar 

  6. Kariko K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with sub-microgram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20(5):948–953

    Article  PubMed  CAS  Google Scholar 

  7. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH, Grupp SA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586

    Article  PubMed  CAS  Google Scholar 

  8. Almasbak H, Rian E, Hoel HJ, Pule M, Walchli S, Kvalheim G, Gaudernack G, Rasmussen AM (2011) Transiently redirected T cells for adoptive transfer. Cytotherapy 13:629–640

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061

    Article  PubMed  CAS  Google Scholar 

  10. Rabinovich PM, Komarovskaya ME, Wrzesinski SH, Alderman JL, Budak-Alpdogan T, Karpikov A, Guo H, Flavell RA, Cheung NK, Weissman SM, Bahceci E (2009) Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum Gene Ther 20:51–61

    Article  PubMed  CAS  Google Scholar 

  11. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY, Kim TG (2009) Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 16:489–497

    Article  PubMed  CAS  Google Scholar 

  12. Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, Pawelec G, Hoerr I, Rammensee HG, Garbe C (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507

    Article  PubMed  CAS  Google Scholar 

  13. Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee HG, Garbe C, Pascolo S (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31:180–188

    Article  PubMed  CAS  Google Scholar 

  14. Pascolo S (2006) Vaccination with messenger RNA. Methods Mol Med 127:23–40

    PubMed  CAS  Google Scholar 

  15. Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39:e142

    Article  PubMed  CAS  Google Scholar 

  16. Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840

    Article  PubMed  CAS  Google Scholar 

  17. Weissman D, Ni H, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Kariko K (2000) HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol 165:4710–4717

    PubMed  CAS  Google Scholar 

  18. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  PubMed  CAS  Google Scholar 

  19. Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Kariko K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892

    Article  PubMed  CAS  Google Scholar 

  20. Kariko K, Weissman D (2007) Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Devel 10:523–532

    PubMed  CAS  Google Scholar 

  21. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  CAS  Google Scholar 

  22. Arnaud-Barbe N, Cheynet-Sauvion V, Oriol G, Mandrand B, Mallet F (1998) Transcription of RNA templates by T7 RNA polymerase. Nucleic Acids Res 26:3550–3554

    Article  PubMed  CAS  Google Scholar 

  23. Nacheva GA, Berzal-Herranz A (2003) Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. Eur J Biochem 270:1458–1465

    Article  PubMed  CAS  Google Scholar 

  24. Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH (1995) Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem 270:6298–6307

    Article  PubMed  CAS  Google Scholar 

  25. Summer H, Gramer R, Droge P (2009) Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp 32:e1485

    Google Scholar 

  26. Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 27:4436–4443

    Article  PubMed  CAS  Google Scholar 

  27. Nallagatla SR, Toroney R, Bevilacqua PC (2011) Regulation of innate immunity through RNA structure and the protein kinase PKR. Curr Opin Struct Biol 21:119–127

    Article  PubMed  CAS  Google Scholar 

  28. Chakrabarti A, Jha BK, Silverman RH (2011) New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 31:49–57

    Article  PubMed  CAS  Google Scholar 

  29. Boo KH, Yang JS (2010) Intrinsic cellular defenses against virus infection by antiviral type I interferon. Yonsei Med J 51:9–17

    Article  PubMed  CAS  Google Scholar 

  30. Bartram A, Poon C, Neufeld J (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. Biotechniques 47:1019–1022

    Article  PubMed  CAS  Google Scholar 

  31. Kramer M, Schulte BM, Eleveld-Trancikova D, van Hout-Kuijer M, Toonen LW, Tel J, de Vries IJ, van Kuppeveld FJ, Jansen BJ, Adema GJ (2010) Cross-talk between human dendritic cell subsets influences expression of RNA sensors and inhibits picornavirus infection. J Innate Immun 2:360–370

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were funded by the National Institutes of Health (grant numbers HL87688 to K.K. and AI050484, AI090788, and DE019059 to D.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew Weissman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Weissman, D., Pardi, N., Muramatsu, H., Karikó, K. (2013). HPLC Purification of In Vitro Transcribed Long RNA. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics