Skip to main content

Pharmacological Inhibitors of Exocytosis and Endocytosis: Novel Bullets for Old Targets

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Pharmacological inhibitors of vesicle trafficking possess great promise as valuable analytical tools for the study of a variety of biological processes and as potential therapeutic agents to fight microbial infections and cancer. However, many commonly used trafficking inhibitors are characterized by poor selectivity that diminishes their use in solving basic problems of cell biology or drug development. Recent high-throughput chemical screens intensified the search for novel modulators of vesicle trafficking, and successfully identified a number of small molecules that inhibit exocytosis and endocytosis in different types of mammalian cells. This chapter provides a systematic overview of recently discovered inhibitors of vesicle trafficking. It describes cellular effects and mechanisms of action of novel inhibitors of exocytosis and endocytosis. Furthermore, it pays special attention to the selectivity and possible off-target effects of these inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  2. Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92:1915–1964

    Article  CAS  PubMed  Google Scholar 

  3. Gordon DE, Bond LM, Sahlender DA, Peden AA (2010) A targeted siRNA screen to identify SNAREs required for constitutive secretion in mammalian cells. Traffic 11: 1191–1204

    Article  CAS  PubMed  Google Scholar 

  4. Naydenov NG, Harris G, Brown B, Schaefer KL, Das SK, Fisher PB, Ivanov AI (2012) Loss of soluble N-ethylmaleimide-sensitive factor attachment protein alpha (αSNAP) induces epithelial cell apoptosis via down-regulation of Bcl-2 expression and disruption of the Golgi. J Biol Chem 287:5928–5941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33

    Article  CAS  PubMed  Google Scholar 

  6. Mishev K, Dejonghe W, Russinova E (2013) Small molecules for dissecting endomembrane trafficking: a cross-systems view. Chem Biol 20:475–486

    Article  CAS  PubMed  Google Scholar 

  7. von Kleist L, Haucke V (2012) At the crossroads of chemistry and cell biology: inhibiting membrane traffic by small molecules. Traffic 13:495–504

    Article  Google Scholar 

  8. Cross BC, McKibbin C, Callan AC et al (2009) Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J Cell Sci 122:4393–4400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Besemer J, Harant H, Wang S et al (2005) Selective inhibition of cotranslational translocation of vascular cell adhesion molecule 1. Nature 436:290–293

    Article  CAS  PubMed  Google Scholar 

  10. Garrison JL, Kunkel EJ, Hegde RS, Taunton J (2005) A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436:285–289

    Article  CAS  PubMed  Google Scholar 

  11. Brown WJ, Plutner H, Drecktrah D, Judson BL, Balch WE (2008) The lysophospholipid acyltransferase antagonist CI-976 inhibits a late step in COPII vesicle budding. Traffic 9: 786–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lu L, Hannoush RN, Goess BC, Varadarajan S, Shair MD, Kirchhausen T (2013) The small molecule dispergo tubulates the endoplasmic reticulum and inhibits export. Mol Biol Cell 24:1020–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sprocati T, Ronchi P, Raimondi A, Francolini M, Borgese N (2006) Dynamic and reversible restructuring of the ER induced by PDMP in cultured cells. J Cell Sci 119:3249–3260

    Article  CAS  PubMed  Google Scholar 

  14. Kramer A, Mentrup T, Kleizen B et al (2013) Small molecules intercept Notch signaling and the early secretory pathway. Nat Chem Biol 9:731–738

    Article  PubMed  Google Scholar 

  15. Ohashi Y, Iijima H, Yamaotsu N et al (2012) AMF-26, a novel inhibitor of the Golgi system, targeting ADP-ribosylation factor 1 (Arf1) with potential for cancer therapy. J Biol Chem 287:3885–3897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Saenz JB, Sun WJ, Chang JW et al (2009) Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat Chem Biol 5:157–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Boal F, Guetzoyan L, Sessions RB et al (2010) LG186: an inhibitor of GBF1 function that causes Golgi disassembly in human and canine cells. Traffic 11:1537–1551

    Article  CAS  PubMed  Google Scholar 

  18. Feng Y, Yu S, Lasell TK et al (2003) Exo1: a new chemical inhibitor of the exocytic pathway. Proc Natl Acad Sci U S A 100:6469–6474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pan H, Yu J, Zhang L et al (2008) A novel small molecule regulator of guanine nucleotide exchange activity of the ADP-ribosylation factor and golgi membrane trafficking. J Biol Chem 283:31087–31096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Viaud J, Zeghouf M, Barelli H et al (2007) Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein–protein complexes. Proc Natl Acad Sci U S A 104:10370–10375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pelish HE, Peterson JR, Salvarezza SB et al (2006) Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat Chem Biol 2:39–46

    Article  CAS  PubMed  Google Scholar 

  22. Friesland A, Zhao Y, Chen YH, Wang L, Zhou H, Lu Q (2013) Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci U S A 110:1261–1266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. von Kleist L, Stahlschmidt W, Bulut H et al (2011) Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146:471–484

    Article  Google Scholar 

  24. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  CAS  PubMed  Google Scholar 

  25. Quan A, McGeachie AB, Keating DJ et al (2007) Myristyl trimethyl ammonium bromide and octadecyl trimethyl ammonium bromide are surface-active small molecule dynamin inhibitors that block endocytosis mediated by dynamin I or dynamin II. Mol Pharmacol 72:1425–1439

    Article  CAS  PubMed  Google Scholar 

  26. Nieland TJ, Feng Y, Brown JX et al (2004) Chemical genetic screening identifies sulfonamides that raise organellar pH and interfere with membrane traffic. Traffic 5:478–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Duncan MC, Ho DG, Huang J, Jung ME, Payne GS (2007) Composite synthetic lethal identification of membrane traffic inhibitors. Proc Natl Acad Sci U S A 104:6235–6240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cerny J, Feng Y, Yu A et al (2004) The small chemical vacuolin-1 inhibits Ca(2+)-dependent lysosomal exocytosis but not cell resealing. EMBO Rep 5:883–888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Stechmann B, Bai SK, Gobbo E et al (2010) Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141: 231–242

    Article  CAS  PubMed  Google Scholar 

  30. Saenz JB, Doggett TA, Haslam DB (2007) Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect Immun 75:4552–4561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jefferies HB, Cooke FT, Jat P et al (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9:164–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fiebiger E, Hirsch C, Vyas JM, Gordon E, Ploegh HL, Tortorella D (2004) Dissection of the dislocation pathway for type I membrane proteins with a new small molecule inhibitor, eeyarestatin. Mol Biol Cell 15:1635–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang Q, Li L, Ye Y (2008) Inhibition of p97-dependent protein degradation by Eeyarestatin I. J Biol Chem 283:7445–7454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Magnaghi P, D’Alessio R, Valsasina B et al (2013) Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol 9:548–556

    Article  CAS  PubMed  Google Scholar 

  35. Maifeld SV, MacKinnon AL, Garrison JL et al (2011) Secretory protein profiling reveals TNF-alpha inactivation by selective and promiscuous Sec61 modulators. Chem Biol 18:1082–1088

    Article  CAS  PubMed  Google Scholar 

  36. Varadarajan S, Bampton ET, Smalley JL et al (2012) A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ 19:1896–1907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Varadarajan S, Tanaka K, Smalley JL et al (2013) Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis. PLoS One 8:e56603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354

    Article  CAS  PubMed  Google Scholar 

  39. Jackson CL (2000) Brefeldin A revealing the fundamental principles governing membrane dynamics and protein transport. Subcell Biochem 34:233–272

    Article  CAS  PubMed  Google Scholar 

  40. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813

    Article  CAS  PubMed  Google Scholar 

  41. Lippincott-Schwartz J, Yuan L, Tipper C, Amherdt M, Orci L, Klausner RD (1991) Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67:601–616

    Article  CAS  PubMed  Google Scholar 

  42. Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12:362–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kahn RA (2009) Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett 583:3872–3879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zeghouf M, Guibert B, Zeeh JC, Cherfils J (2005) Arf, Sec7 and Brefeldin A: a model towards the therapeutic inhibition of guanine nucleotide-exchange factors. Biochem Soc Trans 33:1265–1268

    Article  CAS  PubMed  Google Scholar 

  45. Morinaga N, Tsai SC, Moss J, Vaughan M (1996) Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc Natl Acad Sci U S A 93:12856–12860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL (2005) Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol Biol Cell 16:1213–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Togawa A, Morinaga N, Ogasawara M, Moss J, Vaughan M (1999) Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. J Biol Chem 274:12308–12315

    Article  CAS  PubMed  Google Scholar 

  48. Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109:571–590

    Article  CAS  PubMed  Google Scholar 

  49. Naydenov NG, Brown B, Harris G et al (2012) A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions. PLoS One 7:e34320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Naydenov NG, Harris G, Morales V, Ivanov AI (2012) Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 11:4613–4625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Spooner RA, Watson P, Smith DC et al (2008) The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochem J 414: 471–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. van der Linden L, van der Schaar HM, Lanke KH, Neyts J, van Kuppeveld FJ (2010) Differential effects of the putative GBF1 inhibitors Golgicide A and AG1478 on enterovirus replication. J Virol 84:7535–7542

    Article  PubMed Central  PubMed  Google Scholar 

  53. Huang F, Khvorova A, Marshall W, Sorkin A (2004) Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 279:16657–16661

    Article  CAS  PubMed  Google Scholar 

  54. Vassilieva EV, Nusrat A (2008) Vesicular trafficking: molecular tools and targets. Methods Mol Biol 440:3–14

    Article  CAS  PubMed  Google Scholar 

  55. Gourlaouen M, Welti JC, Vasudev NS, Reynolds AR (2013) Essential role for endocytosis in the growth factor-stimulated activation of ERK1/2 in endothelial cells. J Biol Chem 288:7467–7480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Garrison AR, Radoshitzky SR, Kota KP et al (2013) Crimean-Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology 444:45–54

    Article  CAS  PubMed  Google Scholar 

  57. Smith CM, Haucke V, McCluskey A, Robinson PJ, Chircop M (2013) Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol Cancer 12:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Dutta D, Williamson CD, Cole NB, Donaldson JG (2012) Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7:e45799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519

    Article  CAS  PubMed  Google Scholar 

  60. Mettlen M, Pucadyil T, Ramachandran R, Schmid SL (2009) Dissecting dynamin's role in clathrin-mediated endocytosis. Biochem Soc Trans 37:1022–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. McCluskey A, Daniel JA, Hadzic G et al (2013) Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 14:1272–1289

    Article  CAS  PubMed  Google Scholar 

  62. Gordon CP, Venn-Brown B, Robertson MJ et al (2013) Development of second-generation indole-based dynamin GTPase inhibitors. J Med Chem 56:46–59

    Article  CAS  PubMed  Google Scholar 

  63. Hill TA, Gordon CP, McGeachie AB et al (2009) Inhibition of dynamin mediated endocytosis by the dynoles – synthesis and functional activity of a family of indoles. J Med Chem 52:3762–3773

    Article  CAS  PubMed  Google Scholar 

  64. Mooren OL, Kotova TI, Moore AJ, Schafer DA (2009) Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem 284: 23995–24005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chua J, Rikhy R, Lippincott-Schwartz J (2009) Dynamin 2 orchestrates the global actomyosin cytoskeleton for epithelial maintenance and apical constriction. Proc Natl Acad Sci U S A 106:20770–20775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yamada H, Abe T, Li SA et al (2009) Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem Biophys Res Commun 390:1142–1148

    Article  CAS  PubMed  Google Scholar 

  67. Yamada H, Abe T, Satoh A et al (2013) Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J Neurosci 33:4514–4526

    Article  CAS  PubMed  Google Scholar 

  68. Park RJ, Shen H, Liu L, Liu X, Ferguson SM, De Camilli P (2013) Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J Cell Sci 126:5305–5312

    Article  CAS  PubMed  Google Scholar 

  69. Taguchi T (2013) Emerging roles of recycling endosomes. J Biochem 153:505–510

    Article  CAS  PubMed  Google Scholar 

  70. Epp N, Rethmeier R, Kramer L, Ungermann C (2011) Membrane dynamics and fusion at late endosomes and vacuoles–Rab regulation, multisubunit tethering complexes and SNAREs. Eur J Cell Biol 90:779–785

    Article  CAS  PubMed  Google Scholar 

  71. Rainero E, Norman JC (2013) Late endosomal and lysosomal trafficking during integrin-mediated cell migration and invasion: cell matrix receptors are trafficked through the late endosomal pathway in a way that dictates how cells migrate. Bioessays 35:523–532

    Article  CAS  PubMed  Google Scholar 

  72. Burd CG (2011) Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 12:948–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Zallocchi M, Delimont D, Meehan DT, Cosgrove D (2012) Regulated vesicular trafficking of specific PCDH15 and VLGR1 variants in auditory hair cells. J Neurosci 32: 13841–13859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. McNeil PL (2002) Repairing a torn cell surface: make way, lysosomes to the rescue. J Cell Sci 115:873–879

    CAS  PubMed  Google Scholar 

  75. Liu Y, Zhou Y, Zhu K (2012) Inhibition of glioma cell lysosome exocytosis inhibits glioma invasion. PLoS One 7:e45910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bao JX, Chang H, Lv YG et al (2012) Lysosome-membrane fusion mediated superoxide production in hyperglycaemia-induced endothelial dysfunction. PLoS One 7:e30387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Keerthivasan G, Small S, Liu H, Wickrema A, Crispino JD (2010) Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 116:3331–3340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Barbier J, Bouclier C, Johannes L, Gillet D (2012) Inhibitors of the cellular trafficking of ricin. Toxins 4:15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Lipovsky A, Popa A, Pimienta G et al (2013) Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc Natl Acad Sci U S A 110: 7452–7457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ming X, Carver K, Fisher M et al (2013) The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides. Nucleic Acids Res 41: 3673–3687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Dukes JD, Whitley P, Chalmers AD (2012) The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS One 7:e28659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Martin S, Harper CB, May LM, Coulson EJ, Meunier FA, Osborne SL (2013) Inhibition of PIKfyve by YM-201636 dysregulates autophagy and leads to apoptosis-independent neuronal cell death. PLoS One 8:e60152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Alex Feygin for excellent editorial assistance. This work was supported by National Institute of Health grants RO1 DK083968 and R01 DK084953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei I. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ivanov, A.I. (2014). Pharmacological Inhibitors of Exocytosis and Endocytosis: Novel Bullets for Old Targets. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics