Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 231))

  • 111 Accesses

Abstract

The heart is not a true electrical syncytium. Rather, cardiac muscle is composed of individual cells each invested with an insulating lipid bilayer that would effectively prevent intercellular current flux were there not specialized cell-cell junctions to serve this purpose. In the heart, ions flow from one cell to another via gap junctions, specialized regions of the sarcolemma containing transmembrane channels that adjoin in the extracellular space to create aqueous pores that directly link the cytoplasmic compartments of neighboring cells. A gap junction consists of an array of tens to thousands of closely packed channels that permit intercellular passage of ions and small molecules up to ~1 kDa in molecular weight. Ubiquitous throughout the animal kingdom, gap junctions facilitate intercellular exchange of molecular information in virtually all multicellular tissues. They form during the earliest stages of embryonic development and are thought to play important roles in the spread of morphogens, signaling molecules and ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer EC, Paul DL, Goodenough DA. Connexin family of gap junction proteins. J Membr Biol 116:187–194,1990.

    Article  PubMed  CAS  Google Scholar 

  2. Willecke K, Hennemann H, Dahl E, Jungbluth S, Heynkes R. The diversity of connexin genes encoding gap junction proteins. Eur J Cell Biol 56:1–7, 1991.

    PubMed  CAS  Google Scholar 

  3. Kumar NM, Gilula NB. Molecular biology and genetics of gap junction channels. Sem Cell Biol 3:3–16, 1992.

    Article  CAS  Google Scholar 

  4. Makowski L, Caspar LDL, Phillips WC, Goodenough DA. Gap junction structures. II: Analysis of the x-ray diffraction data. J Celt Biol 74:629–645, 1976.

    Article  Google Scholar 

  5. Beyer EC, Kistler J, Paul DL, Goodenough DA. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108:595–605, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Yancey SB, John SA, Lal R, Austin BJ, Revel J-P. The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains. J Cell Biol 108:2241–2254, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Laird DW, Revel J-P. Biochemical and immunochemical analysis of the arrangement of connexin43 in rat heart gap junction membranes. J Cell Science 97:109–117, 1990.

    PubMed  CAS  Google Scholar 

  8. Yeager M, Gilula NB. Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol 223:929–948, 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Unger VM, Kumar NM, Gilula NB, Yeager M. Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Beyer EC. Molecular cloning and developmental expression oftwo chick embryo gap junction proteins. J Biol Chem 265:14439–14443, 1990.

    PubMed  CAS  Google Scholar 

  11. Kanter HL, Saffitz JE, Beyer EC. Cardiac myocytes express multiple gap junction proteins.Circ Res 70:438–444, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Kanter HL, Laing JG, Beyer EC, Green KG, Saffitz JE. Multiple connexins colocalize in canine ventricular myocyte gap junctions. Circ Res 73:344–350, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Reed KE, Westphale EM, Larson DM, Wang HZ, Veenstra RD, Beyer EC. Molecular cloning and functional expression of human connexin37,an endothelial cell gap junction protein. J Clin Invest 91:997–1004, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Gourdie RG, Green CR, Severs NJ, Thompson RP. Immunolabeling patterns of gap junction connexins in the developing and mature rat heart. Anat Embryol 185:363–378, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA. Connexin 46, a novel lens gap junction protein, induces voltage-gated currents innonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Verheule S. Distribution and physiology of mammalian cardiac gap junctions. Doctoral Thesis, University of Utrecht, 1999.

    Google Scholar 

  17. van Kempen MJ, Fromaget C, Gross D, Moorman AF, Lamers WH. Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart.Circ Res 68:1638–1651, 1991.

    Article  PubMed  Google Scholar 

  18. Kanter HL, Laing JG, Beau SL, Beyer EC, Saffitz JE. Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Circ Res 72:1124–1131, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Davis LM, Kanter HL, Beyer EC, Saffitz JE. Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol 24:1124–1132, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Anumonwo JMB, Wang H-Z, Trabka-Janik E, Dunham B, Veenstra RD, Delmar M, Jalife J. Gap junctional channels in adult mammalian sinus nodal cells: Immunolocalization and electrophysiology. Circ Res 71:229–239, 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Kwong KF, Schuessler RB, Green KG, Boineau JP, Saffitz JE. Differential expression of gap junction proteins in the canine sinus node. Circ Res 82:604–612, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Oosthoek PW, Viragh S, Mayen AEM, van Kempen MJA, Lamers WH, Moorman AFM. Immunohistochemical delineation of the conduction system. I. The sinoatrial node. Circ Res 73:473–481, 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Oosthoek PW, Viragh S, Lamers WH, Moorman AFM. Immunohistochemical delineation of the conduction system. The atrioventricular node and the Purkinje fibers. Circ Res 73:482–491, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Bastide B, Neyses L, Ganten D, Paul M, Willecke F, Traub O. Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ Res 73:1138–1149, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Gros D, Jarry-Guichard T, Ten Velde I, de Maziere A, van Kempen JA, Davoust J, Briand JP, Moorman AFM, Jongsma HJ. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res 74:839–851, 1994.

    Article  PubMed  CAS  Google Scholar 

  27. Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP. The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system J Cell Sci 105:985–991, 1993.

    PubMed  CAS  Google Scholar 

  28. Saffitz JE, Kanter HL, Green KG, Tolley TK, Beyer EC. Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium.Circ Res 74:1065–1070, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Coppen SR, Dupont E, Rothery S, Severs NJ. Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart. Circ Res 82:232–243, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Bruzzone R, Haefliger JA, Gimlich RL, Paul DL. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins.Mol Biol Cell 4:7–20, 1993.

    PubMed  CAS  Google Scholar 

  31. White TW, Paul DL, Goodenough DA, Bruzzone R. Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6:459–470, 1995.

    PubMed  CAS  Google Scholar 

  32. Elfgang C, Eckert R, Lichtenberg-Frate H, et al. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817 1995.

    Article  PubMed  CAS  Google Scholar 

  33. He DS, Burt JM. Function of gap junction channels formed in cells co-expressing connexin40 and 43. In: Gap Junctions, R Werner (Ed.). Amsterdam: IOS Press, 1998, pp. 40–44.

    Google Scholar 

  34. Moreno AP, Fishman GI, Beyer EC, Spray DC. Voltage dependent gating and single channel analysis of heterotypic channels formed by Cx45 and Cx43. Prog Cell Res 4:405–408, 1995.

    Article  CAS  Google Scholar 

  35. Koval M, Geist ST, Westphale EM, Kemendy EM, Civitelli R, Beyer EC, Steinberg TH. Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43. J Cell Biol 130:987–995, 1944

    Article  Google Scholar 

  36. Veenstra RD. Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28:317–337, 1996.

    Article  Google Scholar 

  37. Brink PR, Ramanan SV, Christ GJ. Human connexin43 gap junction channelgating: evidence for mode shifts and/or heterogeneity. Am J Physiol 271:C321–C331, 1996.

    PubMed  CAS  Google Scholar 

  38. Moreno AP, Fishman GI, Spray DC. Phosphorylation shifts unitary conductance and modifies voltage dependent kinetics of human connexin43 gap junction channels. Biophys J 62:51–53, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Beblo DA, Wang H-Z, Beyer EC, Westphale EM, Veenstra RD. Unique conductance, gating, and selective permeability properties of gap junction channels formed by connexin40.Circ Res 77:813–822, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Bukauskas FF, Elfgang C, Willecke K, Weingart R. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs oftransfected human HeLa cells. Biophys J 68:2289–2298, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Beblo DA, Veenstra RD. Monovalent cation permeation through the connexin40gap junction channel. Cs, Rb, K, Na, Li, TEA, TNA, TBA and effects of anions Br,CI, F, acetate, aspartate, glutamate, and N03. J Gen Physiol 104:509–522, 1997.

    Article  Google Scholar 

  42. Veenstra RD, Wang H-Z, Beyer EC, Brink PR. Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res 75:483–490, 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Ek JF, Delmar M, Perzova R, Taffet SM. Role of histidine95 on pH gating of the cardiac gap junction protein connexin43. Circ Res 74:1058–1064, 1994.

    Article  PubMed  CAS  Google Scholar 

  44. Calero G, Kanemitsu M, Taffet SM, Lair AF, Delmar M. A 17mer peptide interferes with acidification-induced uncoupling of connexin43. Circ Res 82:929–935, 1998.

    Article  PubMed  CAS  Google Scholar 

  45. Moreno AP, Sáez JC, Fishman GI, Spray DC. Human connexin43 gap junction channels-Regulation of unitary conductances by phosphorylation. Circ Res 74:1050–1057, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Laird DW, Puranam KL, Revel JP. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273:61–72, 1993.

    Google Scholar 

  47. Lau AP, Hatch Pigott V, Crow DS. Evidence that heart connexin43 is aphosphoprotein. J Mol Cell Cardiol 23:659–663, 1991.

    Article  PubMed  CAS  Google Scholar 

  48. Musil LS, Goodenough DA. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357–1374, 1991.

    Article  PubMed  CAS  Google Scholar 

  49. Fishman GI, Moreno AP, Spray DC, Leinwand LA. Functional analysis of human cardiac gap junction channel mutants. Proc Natl Acad Sci USA 88:3525–3529, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Lash JA, Critser BS, Pressler ML. Cloning of gap junctional protein from vascular smooth muscle and expression in two-cell mouse embryos. J Biol Chem 265:13113–13117, 1990.

    PubMed  CAS  Google Scholar 

  51. Hertlein B, Butterweck A, Haubrich S, Willecke K, Traub O. Phosphorylated carboxyl terminal serine residues stabilize the mouse gap junction protein connexin45 against degradation. J Membrane Biol 162:247–257, 1998.

    Article  CAS  Google Scholar 

  52. Burt JM. Block of intercellular communication: interaction of intracellular H+ and Ca2+. Am J Physiol 352:C607-C612, 1987.

    Google Scholar 

  53. White RL, Doeller JE, Verselis VK, Wittenberg BA. Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ andCa++. J Gen Physiol 95:1061–1075, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Burt JM, Massey KD, Minnich BN. Uncoupling of cardiac cells by fatty acids: Structure-activity relationship. Am J Physiol 260:C439–C448, 1991.

    PubMed  CAS  Google Scholar 

  55. Hirschi KK, Minnich BN, Moore LK, Burt JM. Oleic acid differentially affects gap-junction mediated communication in heart and vascular smooth muscle cells. Am J Physiol 265:C1517–C1526, 1993.

    PubMed  CAS  Google Scholar 

  56. Wu J, McHowat J, Saffitz JE, Yamada KA, Corr PB. Inhibition of gap junctional conductance by long-chain acylcarnitines and their preferential accumulation in junctional sarcolemma during hypoxia. Circ Res 72:879–889, 1993.

    Article  PubMed  CAS  Google Scholar 

  57. Darrow BJ, Laing JG, Lampe PD, Saffitz JE, Beyer EC. Expression of multiple connexins in cultured neonatal rat ventricular myocytes. Circ Res 76:381–387, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Beardslee MA, Laing JG, Beyer EC, Saffitz JE. Rapid turnover of connexin43 in the adult rat heart. Circ Res 83:629–635, 1998.

    Article  PubMed  CAS  Google Scholar 

  59. Laing JG, Beyer EC. The gap junction protein connexin43 is degraded via theubiquitin proteasome pathway. J Biol Chem 270:26399–26403, 1995.

    Article  PubMed  CAS  Google Scholar 

  60. Laing JG, Tadros PN, Green K, Saffitz JE, Beyer EC. Proteolysis of connexin43-containing gap junctions in normal and heat-stressed cardiac myocytes. Cardiovasc Res 38:711–718, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. Reaume AG, de Sousa PA, Kulkarni S, et al. Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834, 1995.

    Article  PubMed  CAS  Google Scholar 

  62. Ewart JL, Cohen MF, Meyer RA, et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene. Development 124:1281–1292, 1997.

    PubMed  CAS  Google Scholar 

  63. Huang GY, Wessels A, Smith BR, Linask KK, Ewart JL, Lo CW. Alteration in connexin43 gap junction gene dosage impairs conotruncal heart development. Develop Biol 198:32–44, 1998.

    Article  PubMed  CAS  Google Scholar 

  64. Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE. Slow ventricular conduction in mice heterozygous for a Cx43 null mutation. J Clin Invest 99:1991–1998, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. Thomas SA, Schuessler RB, Berul CI, Beardslee MA, Beyer EC, Mendelsohn ME, Saffitz JE. Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: Evidence for chamber-specific molecular determinants of conduction.Circulation 97:686–691, 1998.

    Article  PubMed  CAS  Google Scholar 

  66. Kirchhoff S, Nelles E, Hagendorff A, Krüger O, Traub O, Willecke K. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. üCurr Biol 8:299–302, 1998.

    Article  CAS  Google Scholar 

  67. Simon AM, Goodenough DA, Paul DL. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block.Curr Biol 8:295–298, 1998.

    Article  PubMed  CAS  Google Scholar 

  68. Hagendorff A, Schumacher B, Kirchoff S, Lüderitz B, Willecke K. Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation. Circulation 99:1508–1515, 1999.

    Article  PubMed  CAS  Google Scholar 

  69. Schumacher B, Hagendorff A, Plum A, Willecke K, Jung W, Lüderitz B. Electrophysiological effects of connexin43-replacement by connexin32 intransgeneous mice. PACE 22:858, 1999 (Abstract).

    Article  Google Scholar 

  70. Draper MH, Mya-Tu M. A comparison of the conduction velocity in cardiac tissue of various mammals. Q J Exp Physiol 44:91–109, 1959.

    CAS  Google Scholar 

  71. Kadish AH, Shinnar M, Moore EN, Levine JH, Balke CW, Spear JF. Interaction of fiber orientation and direction of impulse propagation with anatomic barriers in anisotropic canine myocardium. Circulation 78:1478–1494, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Spach MS, Miller WT, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ Res 48:39–54, 1981.

    Article  PubMed  CAS  Google Scholar 

  73. Delorme B, Dahl E, Jarry-Guichard T, Briand J-P, Willecke K, Gros D, Théveniau-Ruissy M. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res 81:423–437, 1997.

    Article  PubMed  CAS  Google Scholar 

  74. Alcoléa S, Théveniau-Ruissy M, Jarry-Guichard T, Maries I, Tzouanacou E, Chauvin J-P, Briand J-P, Moorman AFM, Lamers WH, Gros DB. Downregulation of connexin 45 gene products during mouse heart development. Circ Res 84:1365–1379, 1999.

    Article  PubMed  Google Scholar 

  75. Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90:713–725, 1994.

    Article  PubMed  CAS  Google Scholar 

  76. Zak R. Development and proliferative capacity of cardiac muscle cells. Circ Res 34(suppl II):II17–II26, 1974.

    Google Scholar 

  77. Rosen MR, Legato MJ, Weiss RM. Developmental changes in impulse conduction in the canine heart. Am J Physiol 240:H546-H554, 1981.

    Google Scholar 

  78. Dolber PC, Spach MS. Structure of canine Bachmann’s bundle related to propagation of excitation. Am J Physiol 257:H1446-H1457, 1989.

    Google Scholar 

  79. Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH. Mutations of the connexin43 gap junction gene in patients with heart malformations and defects of laterality. N Eng J Med 332:1323–1329, 1995.

    Article  CAS  Google Scholar 

  80. Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262:2039–2042, 1993.

    Article  PubMed  CAS  Google Scholar 

  81. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM. Connexin26 mutations in hereditary non-syndromicsensorineural deafness. Nature 387:80–83, 1997.

    Article  PubMed  CAS  Google Scholar 

  82. Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S. Amis-sense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant“Zonular Pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532, 1998.

    Article  PubMed  CAS  Google Scholar 

  83. Darrow BJ, Fast VG, Kléber AG, Beyer EC, Saffitz JE. Functional and structural assessment of intercellular communication: increased conduction velocity and enhanced connexin expression in dibutyryl cAMP-treated cultured cardiac myocytes. Circ Res 79:174–183, 1996.

    Article  PubMed  CAS  Google Scholar 

  84. Peters NS, del Monte F, MacLeod KT, Green CR, Poole-Wilson PA, Severs NJ. Increased cardiac myocyte gap-junctional membrane early in renovascular hypertension. J Am Coll Cardiol 21:59A (abstract), 1993.

    Google Scholar 

  85. Winterton SJ, Turner MA, O’Gorman DJ, Flores NA, Sheridan DJ. Hypertrophy causes delayed conduction in human and guinea pig myocardium: accentuation duringischaemic perfusion. Cardiovasc Res 23:47–54, 1994.

    Article  Google Scholar 

  86. Cooklin M, Wallis WRJ, Sheridan DJ, Fry CH. Changes in cell-to-cell electrical coupling associated with left ventricular hypertrophy. Circ Res 80:765–771, 1997.

    Article  PubMed  CAS  Google Scholar 

  87. Mclntyre H, Fry CH. Abnormal action potential conduction in isolated human hypertrophied left ventricular myocardium. J Cardiovasc Electrophysiol 8:887–894, 1997.

    Article  Google Scholar 

  88. Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Circ Res 58:356–371, 1986.

    Article  PubMed  CAS  Google Scholar 

  89. Peters NS, Green CR, Poole-Wilson PA, Severs NJ. Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88:864–875, 1993.

    Article  PubMed  CAS  Google Scholar 

  90. Smith JH, Green CR, Peters NS, Rothery S, Severs NJ. Altered patterns of gap junction distribution in ischemic heart disease: an immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol 139:801–821, 1991.

    PubMed  CAS  Google Scholar 

  91. Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95:988–996, 1997.

    Article  PubMed  CAS  Google Scholar 

  92. Kaprielian RR, Gunning M, Dupont E, et al. Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 97:651–660, 1998.

    Article  PubMed  CAS  Google Scholar 

  93. van der Velden HM, van Kempen MJ, Wijffels MC, van Zijverden M, Groenewegen WA, Allessie MA, Jongsma HJ. Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 9:596–607, 1998.

    Article  PubMed  Google Scholar 

  94. Gardner PI, Ursell PC, Fenoglio Jr JJ, Wit AL. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72:596–611, 1985.

    Article  PubMed  CAS  Google Scholar 

  95. Ursell PC, Gardner PI, Albala A, Fenoglio JJ, Wit AL. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing.Circ Res 56:436–451, 1985.

    Article  PubMed  CAS  Google Scholar 

  96. Dillon SM, Allessie MA, Ursell PC, Wit AL. Influences of anisotropic tissue structure and reentrant circuits in the epicardial border zone of subacute canine infarcts.Circ Res 63:182–206, 1988.

    Article  PubMed  CAS  Google Scholar 

  97. DeBakker MJT, van Capelle FJL, Janse MJ, Tasseron S, Vermeulen JT, de Jonge N, Lahpor JR. Slow conduction in the infarcted human heart. “Zigzag” course of activation. Circulation 88:915–926, 1993.

    Article  CAS  Google Scholar 

  98. Luke RA, Saffitz JE. Remodeling of ventricular conduction pathways in healed canine infarct border zones. J Clin Invest 87:1594–1602, 1991.

    Article  PubMed  CAS  Google Scholar 

  99. Kumar NM, Gilula NB. The gap junction communicating channel. Cell 84:381–388, 1996.

    Article  PubMed  CAS  Google Scholar 

  100. Luke RA, Beyer EC, Hoyt RH, Saffitz JE. Quantitative analysis of intercellular connections by immunohistochemistry of the cardiac gap junction protein connexin43.Circ Res 65; 1450–1457, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lerner, D.L., Saffitz, J.E. (2000). Connexins and Conduction. In: Berul, C.I., Towbin, J.A. (eds) Molecular Genetics of Cardiac Electrophysiology. Developments in Cardiovascular Medicine, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4517-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4517-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7037-6

  • Online ISBN: 978-1-4615-4517-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics