Skip to main content

The Regulation of Vascular Endothelial Biology by Frow

  • Chapter
Cell Mechanics and Cellular Engineering

Abstract

The inner surface of a blood vessel is composed of a monolayer of vascular endothelial cells which serves as the interface with flowing blood. Once thought to be simply a passive, non-thrombogenic barrier, the vascular endothelium is now recognized as being a dynamic participant in the biology of a blood vessel (Kaiser and Sparks 1987). Part of its dynamic character is due to the regulation of the biology of the endothelium by the mechanical environment associated with the hemodynamics of the vascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando, J.; Komatsuda, T.; Kamiya, A. Cytoplasmic calcium responses to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev. Biol. 24:871–877, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Asakura, T.; Karino, T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1043–1066, 1990.

    Google Scholar 

  • Berk, B.C.; Girard, P.R.; Mitsumata, M.; Alexander, R.W.; Nerem, R.M.; Shear stress alters the genetic growth program of cultured endothelial cells. Proc. World Congress Biomechs., Vol. H, 315, 1990 (Abstract).

    Google Scholar 

  • Bhagyalakshmi, A.; Berthiaume, F.; Reich, K.M.; Frangos, J.A. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. Vasc. Res. 29:443–449, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Birukov, K.G.; Shirinsky, V.P.; Stepanova, O.V.; Tkachuk, V.A.; Resink, T.J. Cyclic stretch contributes to smooth muscle cell differentiation in culture. Ann. Biomed. Engr. 21 (Supp. 1):29, 1993 (Abstract).

    Google Scholar 

  • Caro, C.G.; Fitz-Gerald, J.M.; Schroter, R.C. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear-dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc, London, B 177:109–159, 1971.

    Google Scholar 

  • Dartsch, P.C.; Betz, E. Response of cultured endothelial cells to mechanical stimulation. Basic Res. Cardiol. 84:268–281, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P.F.; Dewey, C.F. Jr.; Bussolari, S.R.; Gordon, E.J.; Gimbrone, M.A. Jr. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic endothelial cells. J. Clin. Invest. 73:1121–1129, 1983.

    Article  Google Scholar 

  • Davies, P.F.; Remuzzi, A.; Gordon, E.J.; Dewey, C.F. Jr.; Gimbrone, M.A. Jr. Turbulent shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA 83:2114–2117, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, C.F.; Bussolari, S.R.; Gimbrone, M.A. Jr.; Davies, P.F. The dynamic response of vascular endothelial cells to fluid shear stress. ASME J. Biomech. Engr. 103:177–181, 1981.

    Article  Google Scholar 

  • Diamond, S.L.; Eskin, S.G.; McIntire, L.V. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, S.L.; Sharefkin, J.B.; Dieffenbach, C.; Frazier-Scott, K.; Mclntire, L.V.; Eskin, S.G. Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J. Cell Physiol. 143:364–371, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Dull, R.O.; Davies, P.F. Flow modulation of agonist (ATP)-response (Ca++) coupling in vascular endothelial cells. Am. J. Physiol. 261:H149–154, 1991.

    PubMed  CAS  Google Scholar 

  • Eskin, S.G.; Ives, C.L.; McIntire, L.V.; Navarro, L.T. Response of cultured endothelial cells to steady flow. Microvasc. Res. 28:87–94, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, J.R.; Pierce, J.R.; Ferrans, V.J.; Patel, DJ.; Tucker, W.K.; Fry, D.L. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 30:23–33, 1972.

    PubMed  CAS  Google Scholar 

  • Frangos, J.A.; Eskin, S.G.; McIntire, L.V.; Ives, C.L. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M.H.; Hutchins, G.M.; Bargeron, C.B.; Deters, O.J.; Mark, F.F. Correlation between intimai thickness and fluid shear in human arteries. Atherosclerosis 39:425–436, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M.H.; Peters, O.J.; Bargeron, C.B.; Hutchins, G.M.; Mark, F.F. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C.; Lin, S.Q. Elementary mechanics of the endothelium of blood vessels. ASME J. Biomech. Engr. 115:1–12, 1993.

    Article  CAS  Google Scholar 

  • Geiger, R.V.; Berk, B.C.; Alexander, R.W.; Nerem, R.M. Flow-induced calcium transients on single endothelial cells: spatial and temporal analysis. Am. J. Physiol.: Cell Physiol. 262: C1411–1417, 1992.

    CAS  Google Scholar 

  • Girard, P.R.; Nerem, R.M. Endothelial cell signaling and cytoskeletal changes in response to shear stress. Frontiers Med. Biol. Eng. 5:31–36, 1993.

    CAS  Google Scholar 

  • Girard, P.R.; Helmlinger, G.; Nerem, R.M. Shear stress effects on the morphology and cytomatrix of cultured vascular endothelial cells. In: Physical Forces and the Mammalian Cell. J.A. Frangos (Ed.). Academic Press, NY, pp. 193–222, 1993.

    Google Scholar 

  • Gorfien, S.F.; Winston, S.K.; Thibault, L.E.; Macarak, E.J. Effects of biaxial deformation on pulmonary artery endothelial cells. J. Cell Physiology 139:492–500, 1989.

    Article  CAS  Google Scholar 

  • Grabowski, E.F.; Jaffe, E.A.; Weksler, B.B. Prostacyclin production by cultured human endothelial cells exposed to step increases in shear stress. J. Lab. Clin. Med. 105:36–43, 1985.

    PubMed  CAS  Google Scholar 

  • Grottum, P.; Svindland, A.; Walloe, L. Localization of atherosclerotic lesions in the bifurcation of the left main coronary artery. Atherosclerosis, 47:55–62, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger, G.; Geiger, R.V.; Schreck, S.; Nerem, R.M. Effects of pulsatile flow on cultured vascular endothelial cell morphology. ASME J. Biomech. Engr. 113:123–131, 1991.

    Article  CAS  Google Scholar 

  • Helmlinger, G.; Nerem, R.M. The intracellular free calcium response in endothelial cells subjected to steady and pulsatile laminar flow. Ann. Biomed. Engr. 21 (Supp. 1):39, 1993 (Abstract).

    Google Scholar 

  • Hsieh, H.J.; Li, N.Q.; Frangos, J.A. Shear stress increases endothelial platelet-derived growth factor messenger RNA levels. Am. J. Physiol. 260 (Heart Circ. Physiol. 29):H642–646, 1991.

    PubMed  CAS  Google Scholar 

  • Kaiser, L.; Sparks, H.V. Endothelial cells: not just a cellophane wrapper. Arch. Intern. Med. 147:569–573, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya, A.; Togawa, T. Adaptive regulation of wall shear stress to flow and change in the canine carotid artery. Am. J. Physiol. 239:H14–21, 1980.

    PubMed  CAS  Google Scholar 

  • Kim, D.W.; Gotlieb, A.I.; Langille, B.L. In vivo modulation of endothelial Factin microfilaments by experimental alterations in shear stress. Arteriosclerosis 9:439–445, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5:293–302, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Langille, B.L.; O’Donnell, F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lansman, J.B.; Hallam, T.J.; Rink, T.J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M.J.; Liepsch, D.; Moravec, S.; Nerem, R.M. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6:220–229, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M.J.; Nerem, R.M. The elongation and orientation of cultured endothelial cells in response to shear stress. ASME J. Biomech. Engr. 107:341–347, 1985.

    Article  CAS  Google Scholar 

  • Levesque, M.J.; Sprague, E.A.; Nerem, R.M. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11:702–707, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T.; Stryer, L. Molecular model for receptor-stimulated calcium spiking. Proc. Nat. Aca. Sci. USA, 85:5051–5055, 1988.

    Article  CAS  Google Scholar 

  • Mitsumata, M.; Fishel, R.S.; Nerem, R.M.; Alexander, R.W.; Berk, B.C. Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am. J. Physiology 265:H3–8, 1993.

    CAS  Google Scholar 

  • Mitsumata, M.; Nerem, R.M.; Alexander, R.W.; Berk, B.C. Shear stress inhibits endothelial cell proliferation by growth arrest in the G0/G1 phase of the cell cycle. FASEB J. 5(4):A527 (Abstract), 1991.

    Google Scholar 

  • Mo, M.; Eskin, S.G.; Schilling, W.P. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol. 260:H1698–1707, 1991.

    PubMed  CAS  Google Scholar 

  • Nerem, R.M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. ASME J. Biomech. Engr. 114:274–282, 1992.

    Article  CAS  Google Scholar 

  • Nerem, R.M.; Levesque, M.J.; Cornhill, J.F. Vascular endothelial morphology as an indicator of blood flow. ASME J. Biomech. Engr. 103:172–176, 1981.

    Article  CAS  Google Scholar 

  • Nishida, K.; Harrison, D.G.; Navas, J.P.; Fisher, A.A.; Dockery, S.P.; Uematsu, M.; Nerem, R.M.; Alexander, R.W.; Murphy, T.J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J. Clinical Invest. 90:2092–2096, 1992.

    Article  CAS  Google Scholar 

  • Nollert, M.U.; Eskin, S.G.; McIntire, L.V. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem. Biophys. Commun. 170:281–287, 1990.

    Article  CAS  Google Scholar 

  • Nollert, M.V.; Mclntire, L.V. Convective mass transfer effects on the intracellular calcium response of endothelial cells. ASME J. Biomech. Engr. 114:321–326, 1992.

    Article  CAS  Google Scholar 

  • Ohtsuka, A.; Ando, J.; Korenaga, R.; Kamiya, A.; Toyama-Sorimachi, N.; Miyasaka, M. The effect of flow on the expression of vascular adhesion molecule-1 by cultured mouse endothelial cells. Biochem. Biophys. Res. Comm. 193:303–310, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Olesen, S.P.; Clapham, D.E.; Davies, P.F. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, A.R.S.; Logan, S.A.; Nerem, R.M.; Schwartz, C.J.; Sprague, E.A. Flow-related responses of intracellular inosital phosphate levels in cultured aortic endothelial cells. Circ. Res. 72/4:827–836, 1993.

    PubMed  CAS  Google Scholar 

  • Resnick, N., Dewey, C.F.; Atkinson, B.; Collins, T.; Gimbrone, M.A. Jr. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear stress responsive element. Proc. Natl. Acad. Sci. USA 90:4591–4595, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M.; Levesque, M.J.; Nerem, R.M. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M.; Theret, D.P.; Wheeler, L.T.; Ohshima, N.; Nerem, R.M. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. ASME J. Biomech. Eng. 112:263–268, 1990.

    Article  CAS  Google Scholar 

  • Schwarz, G.; Droogmans, G.; Nilius, B. Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch. 421:394–396, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sharefkin, J.B.; Diamond, S.L.; Eskin, S.G.; McIntire, L.V.; Dieffenbach, C.W. Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J. Vasc. Surg. 14:1–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J.; Luscinskas, F.W.; Connolly, A.; Dewey, C.F. Jr., Gimbrone, M.A. Jr. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262 (Cell Physiol. 31): C384–390, 1992.

    PubMed  CAS  Google Scholar 

  • Shen, J.; Gimbrone, M.A. Jr.; Luscinskas, F.W.; Dewey, C.F. Jr. Regulation of adenine nucleotide concentration at endothelium-fluid interface by viscous shear flow. Biophys. J. 64:1323–1330, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Shirinsky, V.P.; Antonov, A.S.; Birukov, K.G.; Sobolevsky, A.V.; Romanov, Y.A.; Kabaeva, N.V.; Anonova, G.N.; Smirnov, V.N. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109:331–339, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Silkworth, J.B.; Stehbens, W.E. The shape of endothelial cells in en face preparations of rabbit blood vessels. Angiology 26:474–487, 1975.

    Article  Google Scholar 

  • Sprague, E.A.; Cayatte, A.J.; Nerem, R.M.; Schwartz, C.J. Cultured endothelial cells conditioned to prolonged low shear stress exhibit enhanced monocyte adherence and expression of related genes, MCP-1 and VCAM-1. In: Proceedings of the Cardiovascular Science and Technology Conference. LH Edmunds, Jr. (ed)., Association for the Advancement of Medical Instrumentation, Washington, D.C. 100, 1992.

    Google Scholar 

  • Sprague, E.A.; Steinbach, B.L.; Nerem, R.M.; Schwartz, C.J. Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low density lipoproteins by cultured arterial endothelium. Circulation 76:648–656, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sumpio, B.E.; Banes, A.J. Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic stretch. Surgery 104:383–389, 1988.

    PubMed  CAS  Google Scholar 

  • Sumpio, B.E.; Banes, A.J.; Levin, L.G.; Johnson, G. Jr. Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6:252–256, 1987.

    PubMed  CAS  Google Scholar 

  • Sumpio, B.E.; Banes, A.J.; Levin, L.G.; Johnson, G. Jr. Alternations in aortic endothelial cell morphology and cytoskeleton protein synthesis during cyclic tensional deformation. J. Vasc. Surg. 7:130–138, 1988.

    PubMed  CAS  Google Scholar 

  • Theret, D.P.; Levesque, M.J.; Sato, M.; Nerem, R.M.; Wheeler, L.T. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurement. ASME J. Biomech. Eng. 110:190–199, 1988.

    Article  CAS  Google Scholar 

  • Thoumine, O.; Girard, P.R.; Nerem, R.M. The effects of shear stress on the extracellular matrix of cultured bovine aortic endothelial cells. J. Cell. Biochem. (Supplement) 17E:157, 1993 (Abstract).

    Google Scholar 

  • Watson, P.A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5:2013–2019, 1991.

    PubMed  CAS  Google Scholar 

  • Wechezak, A.R.; Viggers, R.F.; Sauvage, L.R. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab. Invest. 53:639–647, 1985.

    PubMed  CAS  Google Scholar 

  • White, G.E.; Fujiwara, K.; Shelton, E.J.; Dewey, C.F. Jr.; Gimbrone, M.A. Jr. Fluid shear stress influences cell shape and cytoskeletal organization in cultured vascular endothelium. Fed. Proc. 41:321 (Abstract), 1982.

    Google Scholar 

  • White, G.E.; Gimbrone, M.A. Jr.; Fujiwara, K. Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J. Cell Biol. 97:416–424, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Wiesner, T.F.; Helmlinger, G.; Nerem, R.M. A model of thrombin-mediated cytosolic calcium mobilization in HUVECs responding to flow. Ann. Biomed. Engr. 21 (Supp. 1):38, 1993 (Abstract).

    Google Scholar 

  • Winston, F.K.; Thibault, L.E.; Macarak, E.J. An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation. ASME J. Biomech. Engr. 115:160–168, 1993.

    Article  CAS  Google Scholar 

  • Zarins, C.K.; Zarina, M.A.; Ku, D.N.; Glagov, S.; Giddens, D.P. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5:413–420, 1987.

    PubMed  CAS  Google Scholar 

  • Ziegler, T.; Nerem, R.M. The effect of flow on the process of endothelial cell division. Arteriosclerosis and Thrombosis (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Nerem, R.M., Girard, P.R., Helmlinger, G., Thoumine, O., Wiesner, T.F., Ziegler, T. (1994). The Regulation of Vascular Endothelial Biology by Frow. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics