Skip to main content

Endometrial Regenerative Cells and Exosomes Thereof for Treatment of Radiation Exposure

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

In 2007, we discovered a novel subset of mesenchymal stem cells (MSCs) derived from the endometrium, termed “endometrial regenerative cells (ERC).” In comparison to other MSC types (e.g., bone marrow and adipose), ERC possess (a) more rapid proliferative rate, (b) higher levels of growth factor production (VEGF, GM-CSF, PDGF), and (c) higher angiogenic activity. We are currently running two clinical trials for these cells in patients with critical limb ischemia and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manthous CA, Jackson Jr WL. The 9-11 Commission’s invitation to imagine: a pathophysiology-based approach to critical care of nuclear explosion victims. Crit Care Med. 2007;35(3):716–23.

    Article  PubMed  Google Scholar 

  2. Ross JR, et al. Radiation injury treatment network (RITN): healthcare professionals preparing for a mass casualty radiological or nuclear incident. Int J Radiat Biol. 2011;87(8):748–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Heslet L, Bay C, Nepper-Christensen S. Acute radiation syndrome (ARS) – treatment of the reduced host defense. Int J Gen Med. 2012;5:105–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Herodin F, et al. Which place for stem cell therapy in the treatment of acute radiation syndrome? Folia Histochem Cytobiol. 2005;43(4):223–7.

    PubMed  Google Scholar 

  5. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12(6):738–47.

    Article  CAS  PubMed  Google Scholar 

  6. Mettler Jr FA, et al. Can radiation risks to patients be reduced without reducing radiation exposure? The status of chemical radioprotectants. AJR Am J Roentgenol. 2011;196(3):616–8.

    Article  PubMed  Google Scholar 

  7. Galotto M, et al. Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol. 1999;27(9):1460–6.

    Article  CAS  PubMed  Google Scholar 

  8. Banfi A, et al. Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment. Leuk Lymphoma. 2001;42(5):863–70.

    Article  CAS  PubMed  Google Scholar 

  9. Almeida-Porada G, et al. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood. 2000;95(11):3620–7.

    CAS  PubMed  Google Scholar 

  10. Noort WA, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol. 2002;30(8):870–8.

    Article  PubMed  Google Scholar 

  11. Francois S, et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells. 2006;24(4):1020–9.

    Article  PubMed  Google Scholar 

  12. Zhuo W, et al. Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urol Int. 2011;86(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  13. Nightingale H, et al. Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev. 2012;21:2026–35.

    Article  CAS  PubMed  Google Scholar 

  14. Wei L, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Crisostomo PR, et al. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol. 2008;294(3):C675–82.

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, et al. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R880–4.

    Article  CAS  PubMed  Google Scholar 

  17. Mouiseddine M, et al. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol. 2007;80(Spec No 1):S49–55.

    Article  CAS  PubMed  Google Scholar 

  18. Lazarus HM, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16(4):557–64.

    CAS  PubMed  Google Scholar 

  19. Koc ON, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000;18(2):307–16.

    CAS  PubMed  Google Scholar 

  20. Lazarus HM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant. 2005;11(5):389–98.

    Article  PubMed  Google Scholar 

  21. Ball LM, et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood. 2007;110(7):2764–7.

    Article  CAS  PubMed  Google Scholar 

  22. Baron F, et al. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant. 2010;16(6):838–47.

    Article  PubMed  Google Scholar 

  23. Tolar J, et al. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells. 2010;28(8):1446–55.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yang X, et al. Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol. 2012;2012:142530.

    PubMed Central  PubMed  Google Scholar 

  25. Lange C, et al. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One. 2011;6(1):e14486.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hu KX, et al. The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol. 2010;83(985):52–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Saha S, et al. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Honmou O, et al. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18(5):292–7.

    Article  CAS  PubMed  Google Scholar 

  29. Ali Khalili M, et al. Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis. 2011;21(6):445–51.

    Article  Google Scholar 

  30. Bao X, et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34(1):87–98.

    Article  PubMed  Google Scholar 

  31. Huang TT. Redox balance- and radiation-mediated alteration in hippocampal neurogenesis. Free Radic Res. 2012;46:951–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tzouvelekis A, Antoniadis A, Bouros D. Stem cell therapy in pulmonary fibrosis. Curr Opin Pulm Med. 2011;17(5):368–73.

    Article  PubMed  Google Scholar 

  33. Nemeth K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Meng X, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Patel AN, et al. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17(3):303–11.

    Article  PubMed  Google Scholar 

  36. Hida N, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695–704.

    Article  CAS  PubMed  Google Scholar 

  37. Zhong Z, et al. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med. 2009;7:15.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ichim TE, et al. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol. 2010;260(2):75–82.

    Article  CAS  PubMed  Google Scholar 

  39. Ichim TE, et al. Combination stem cell therapy for heart failure. Int Arch Med. 2010;3(1):5.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Murphy MP, et al. Allogeneic endometrial regenerative cells: an “Off the shelf solution” for critical limb ischemia? J Transl Med. 2008;6:45.

    Google Scholar 

  41. Borlongan CV, et al. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 2010;19(4):439–52.

    Google Scholar 

  42. Wolff EF, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med. 2011;15(4):747–55.

    Google Scholar 

  43. Santamaria X, et al. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19(11):2065–71.

    Google Scholar 

  44. Wu X, et al. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev. 2014;23(11):1245–57.

    Google Scholar 

  45. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    Article  CAS  PubMed  Google Scholar 

  46. Alonso R, et al. Diacylglycerol kinase alpha regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ. 2011;18(7):1161–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zhang H, et al. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8(1):23–30.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Mathews JA, et al. CD23 Sheddase A disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes. J Biol Chem. 2010;285(48):37531–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Buschow SI, et al. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol. 2010;88(8):851–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hwang I, Ki D. Receptor-mediated T cell absorption of antigen presenting cell-derived molecules. Front Biosci. 2011;16:411–21.

    Article  CAS  Google Scholar 

  51. Viaud S, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-gamma. J Immunother. 2011;34(1):65–75.

    Article  PubMed  Google Scholar 

  52. Clayton A, et al. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol. 2011;187(2):676–83.

    Article  CAS  PubMed  Google Scholar 

  53. Battke C, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  54. Lachenal G, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–18.

    Article  CAS  PubMed  Google Scholar 

  55. Faure J, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31(4):642–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fitzner D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011;124(Pt 3):447–58.

    Article  CAS  PubMed  Google Scholar 

  57. Mincheva-Nilsson L, Baranov V. The role of placental exosomes in reproduction. Am J Reprod Immunol. 2010;63(6):520–33.

    Article  CAS  PubMed  Google Scholar 

  58. Sahoo S, et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res. 2011;109(7):724–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011;6(4):481–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Ichim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Bogin, V., Ichim, T.E. (2015). Endometrial Regenerative Cells and Exosomes Thereof for Treatment of Radiation Exposure. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6542-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6542-2_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6541-5

  • Online ISBN: 978-1-4471-6542-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics