Skip to main content

Mechanical Circulatory Support as a Bridge to Heart Transplantation

  • Chapter
  • First Online:
Heart Failure

Abstract

Heart failure (HF) continues to be a pandemic due to the growing burden of an aging population and the rising incidence of the disease. The success of medical therapy and cardiac resynchronization therapy has yielded a population of advanced HF patients with poor quality of life, frequent hospitalizations and hemodynamic instability. Heart transplantation remains the gold standard treatment for such patients; however, the small number of available donor organs and contraindications to heart transplantation in very sick patients limits this therapeutic approach. For those facing prolonged waiting times, mechanical circulatory support of the failing heart has emerged as an effective bridging strategy which has revolutionized the treatment of late stage heart failure. Outcomes after left ventricular assist device (LVAD) placement have significantly improved with the newer devices. Operative mortality in well-selected patients has improved to 5–10 % and the 1-year overall survival has improved to nearly 80 % as compared to 90 % after heart transplantation. Following upon the success with bridging patients to transplantation and the emergence of durable continuous flow pumps, there is a growing enthusiasm to apply this technology as lifelong therapy. Undoubtedly, LVADs have changed the landscape for the treatment of HF and the technology will continue to develop in the foreseeable future. This chapter provides an up to date overview of current LVAD technology and highlights the novel landmark studies that have established LVADs as a therapeutic option for HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209. Epub 2010/12/17.

    Article  PubMed  Google Scholar 

  2. McMurray JJ, Petrie MC, Murdoch DR, Davie AP. Clinical epidemiology of heart failure: public and private health burden. Eur Heart J. 1998;(19 Suppl P):P9–16. Epub 1999/01/14.

    Google Scholar 

  3. Mann DL. Left ventricular size and shape: determinants of mechanical signal transduction pathways. Heart Fail Rev. 2005;10(2):95–100. Epub 2005/11/01.

    Article  PubMed  Google Scholar 

  4. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, et al. The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A. 2009;106(7):2342–7. Epub 2009/01/31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Libonati JR. Cardiac remodeling and function following exercise and angiotensin II receptor antagonism. Eur J Appl Physiol. 2012;112(8):3149–54. Epub 2011/12/07.

    Article  PubMed  Google Scholar 

  6. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P. Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res. 1990;67(1):23–34. Epub 1990/07/01.

    Article  CAS  PubMed  Google Scholar 

  7. Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ. Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail. 2013;6(3):572–83. Epub 2013/03/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, et al. JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis. 2012;3:265. Epub 2012/02/03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9. Epub 1996/10/17.

    Article  CAS  PubMed  Google Scholar 

  10. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353(9146):9–13. Epub 1999/02/19.

    Google Scholar 

  11. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001–7. Epub 1999/06/22.

    Google Scholar 

  12. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344(22):1651–8. Epub 2001/06/02.

    Article  CAS  PubMed  Google Scholar 

  13. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. 2003;362(9377):7–13. Epub 2003/07/11.

    Article  CAS  PubMed  Google Scholar 

  14. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17. Epub 1999/09/02.

    Article  CAS  PubMed  Google Scholar 

  15. Rywik TM. [Summary of the article: Zannad F, McMurray JJV, Krum H et al., for the EMPHASIS-HF Study Group. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21]. Kardiologia polska. 2011;69(6):631–2. Epub 2011/06/17. Badanie EMPHASIS – eplerenon w lagodnej, skurczowej niewydolnosci serca.

    Google Scholar 

  16. Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345(23):1667–75. Epub 2002/01/05.

    Article  CAS  PubMed  Google Scholar 

  17. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362(9386):767–71. Epub 2003/09/19.

    Article  CAS  PubMed  Google Scholar 

  18. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43. Epub 2002/01/17.

    Article  CAS  PubMed  Google Scholar 

  19. Rogers JG, Butler J, Lansman SL, Gass A, Portner PM, Pasque MK, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50(8):741–7. Epub 2007/08/21.

    Article  PubMed  Google Scholar 

  20. Fowler MB. Carvedilol prospective randomized cumulative survival (COPERNICUS) trial: carvedilol in severe heart failure. Am J Cardiol. 2004;93(9A):35B–9B. Epub 2004/05/18.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson SR, Givertz MM, Stewart GC, Mudge Jr GH. Ventricular assist devices: The challenges of outpatient management. J Am Coll Cardiol. 2009;54(18):1647–59. Epub 2009/10/20.

    Article  PubMed  Google Scholar 

  22. Prothero J, Burton AC. The physics of blood flow in capillaries. I. The nature of the motion. Biophys J. 1961;1:565–79. Epub 1961/09/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, John R. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9. Epub 2009/04/01.

    Article  PubMed  Google Scholar 

  24. Saito S, Westaby S, Piggot D, Dudnikov S, Robson D, Catarino PA, et al. End-organ function during chronic nonpulsatile circulation. Ann Thorac Surg. 2002;74(4):1080–5. Epub 2002/10/29.

    Article  PubMed  Google Scholar 

  25. Burke DJ, Burke E, Parsaie F, Poirier V, Butler K, Thomas D, et al. The Heartmate II: design and development of a fully sealed axial flow left ventricular assist system. Artif Organs. 2001;25(5):380–5. Epub 2001/06/14.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen DQ, Thourani VH. Third-generation continuous flow left ventricular assist devices. Innovations (Philadelphia). 2010;5(4):250–8. Epub 2010/07/01.

    Article  Google Scholar 

  27. Hoshi H, Shinshi T, Takatani S. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs. 2006;30(5):324–38. Epub 2006/05/11.

    Article  PubMed  Google Scholar 

  28. Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32(1):1–11. Epub 2012/12/25.

    Article  PubMed  Google Scholar 

  29. Garbade J, Bittner HB, Barten MJ, Mohr FW. Current trends in implantable left ventricular assist devices. Cardiol Res Pract. 2011;2011:290561. Epub 2011/08/09.

    PubMed  PubMed Central  Google Scholar 

  30. Morshuis M, El-Banayosy A, Arusoglu L, Koerfer R, Hetzer R, Wieselthaler G, et al. European experience of DuraHeart magnetically levitated centrifugal left ventricular assist system. Eur J Cardiothorac Surg. 2009;35(6):1020–7. discussion 7-8. Epub 2009/02/24.

    Article  PubMed  Google Scholar 

  31. Aaronson KD, Slaughter MS, Miller LW, McGee EC, Cotts WG, Acker MA, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–200. Epub 2012/05/24.

    Article  PubMed  Google Scholar 

  32. Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33(1):23–34. Epub 2014/01/15.

    Article  PubMed  Google Scholar 

  33. Lindenfeld J, Feldman AM, Saxon L, Boehmer J, Carson P, Ghali JK, et al. Effects of cardiac resynchronization therapy with or without a defibrillator on survival and hospitalizations in patients with New York Heart Association class IV heart failure. Circulation. 2007;115(2):204–12. Epub 2006/12/28.

    Article  PubMed  Google Scholar 

  34. Strueber M, O'Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM. Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol. 2011;57(12):1375–82. Epub 2011/03/19.

    Article  PubMed  Google Scholar 

  35. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–21. Epub 2009/07/18.

    Article  PubMed  Google Scholar 

  36. Birks EJ. Molecular changes after left ventricular assist device support for heart failure. Circ Res. 2013;113(6):777–91. Epub 2013/08/31.

    Article  CAS  PubMed  Google Scholar 

  37. Bruckner BA, Stetson SJ, Perez-Verdia A, Youker KA, Radovancevic B, Connelly JH, et al. Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transplant. 2001;20(4):457–64. Epub 2001/04/11.

    Article  CAS  PubMed  Google Scholar 

  38. Ambardekar AV, Walker JS, Walker LA, Cleveland Jr JC, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–32. Epub 2011/05/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB. Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation. 1998;97(23):2316–22. Epub 1998/06/25.

    Article  CAS  PubMed  Google Scholar 

  40. Bruckner BA, Razeghi P, Stetson S, Thompson L, Lafuente J, Entman M, et al. Degree of cardiac fibrosis and hypertrophy at time of implantation predicts myocardial improvement during left ventricular assist device support. J Heart Lung Transplant. 2004;23(1):36–42. Epub 2004/01/22.

    Article  PubMed  Google Scholar 

  41. Segura AM, Frazier OH, Demirozu Z, Buja LM. Histopathologic correlates of myocardial improvement in patients supported by a left ventricular assist device. Cardiovasc Pathol. 2011;20(3):139–45. Epub 2010/02/27.

    Article  PubMed  Google Scholar 

  42. Yamada Y, Saito S, Nishinaka T, Yamazaki K. Myocardial size and fibrosis changes during left ventricular assist device support. ASAIO J. 2012;58(4):402–6. Epub 2012/06/29.

    Article  PubMed  Google Scholar 

  43. Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, et al. Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008;118(14 Suppl):S94–105. Epub 2008/10/10.

    Article  PubMed  Google Scholar 

  44. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84. Epub 2006/11/03.

    Article  CAS  PubMed  Google Scholar 

  45. Mancini D, Lietz K. Selection of cardiac transplantation candidates in 2010. Circulation. 2010;122(2):173–83. Epub 2010/07/14.

    Article  PubMed  Google Scholar 

  46. Deng MC, Edwards LB, Hertz MI, Rowe AW, Keck BM, Kormos R, et al. Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report – 2005. J Heart Lung Transplant. 2005;24(9):1182–7. Epub 2005/09/07..

    Article  PubMed  Google Scholar 

  47. Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, et al. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007;116(5):497–505. Epub 2007/07/20.

    Article  PubMed  Google Scholar 

  48. Peura JL, Colvin-Adams M, Francis GS, Grady KL, Hoffman TM, Jessup M, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126(22):2648–67. Epub 2012/10/31.

    Article  PubMed  Google Scholar 

  49. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–39. Epub 2010/02/26.

    Article  PubMed  Google Scholar 

  50. Wilson SR, Mudge Jr GH, Stewart GC, Givertz MM. Evaluation for a ventricular assist device: selecting the appropriate candidate. Circulation. 2009;119(16):2225–32. Epub 2009/04/29.

    Article  PubMed  Google Scholar 

  51. Oz MC, Goldstein DJ, Pepino P, Weinberg AD, Thompson SM, Catanese KA, et al. Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation. 1995;92(9 Suppl):II169–73. Epub 1995/11/01.

    Article  CAS  PubMed  Google Scholar 

  52. Rao V, Oz MC, Flannery MA, Catanese KA, Argenziano M, Naka Y. Revised screening scale to predict survival after insertion of a left ventricular assist device. J Thorac Cardiovasc Surg. 2003;125(4):855–62. Epub 2003/04/17.

    Article  PubMed  Google Scholar 

  53. Cowger J, Sundareswaran K, Rogers JG, Park SJ, Pagani FD, Bhat G, et al. Predicting survival in patients receiving continuous flow left ventricular assist devices: the HeartMate II risk score. J Am Coll Cardiol. 2013;61(3):313–21. Epub 2012/12/26.

    Article  CAS  PubMed  Google Scholar 

  54. Stevenson LW, Pagani FD, Young JB, Jessup M, Miller L, Kormos RL, et al. J Heart Lung Transplant. 2009;28(6):535–41. Epub 2009/06/02.

    Article  PubMed  Google Scholar 

  55. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. INTERMACS profiles of advanced heart failure: the current picture. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29(1):1–10. Epub 2010/02/04

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stevenson LW. Clinical use of inotropic therapy for heart failure: looking backward or forward? Part II: chronic inotropic therapy. Circulation. 2003;108(4):492–7. Epub 2003/07/30.

    Article  PubMed  Google Scholar 

  57. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Aurora P, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report – 2007. J Heart Lung Transplant. 2007;26(8):769–81. Epub 2007/08/19.

    Article  PubMed  Google Scholar 

  58. Morgan JA, John R, Rao V, Weinberg AD, Lee BJ, Mazzeo PA, et al. Bridging to transplant with the HeartMate left ventricular assist device: The Columbia Presbyterian 12-year experience. J Thorac Cardiovasc Surg. 2004;127(5):1309–16. Epub 2004/04/30.

    Article  PubMed  Google Scholar 

  59. Aaronson KD, Eppinger MJ, Dyke DB, Wright S, Pagani FD. Left ventricular assist device therapy improves utilization of donor hearts. J Am Coll Cardiol. 2002;39(8):1247–54. Epub 2002/04/17.

    Article  PubMed  Google Scholar 

  60. Hong KN, Iribarne A, Yang J, Ramlawi B, Takayama H, Naka Y, et al. Do posttransplant outcomes differ in heart transplant recipients bridged with continuous and pulsatile flow left ventricular assist devices? Ann Thorac Surg. 2011;91(6):1899–906. Epub 2011/04/26.

    Article  PubMed  Google Scholar 

  61. Healy AH, Baird BC, Drakos SG, Stehlik J, Selzman CH. Impact of ventricular assist device complications on posttransplant survival: an analysis of the United network of organ sharing database. Ann Thorac Surg. 2013;95(3):870–5. Epub 2012/12/12.

    Article  PubMed  Google Scholar 

  62. John R, Pagani FD, Naka Y, Boyle A, Conte JV, Russell SD, et al. Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg. 2010;140(1):174–81. Epub 2010/05/08.

    Article  PubMed  Google Scholar 

  63. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96. Epub 2007/09/01.

    Article  CAS  PubMed  Google Scholar 

  64. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. Epub 2009/11/19.

    Article  CAS  PubMed  Google Scholar 

  65. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Third INTERMACS annual report: the evolution of destination therapy in the United States. J Heart Lung Transplant. 2011;30(2):115–23. Epub 2011/01/11.

    Article  PubMed  Google Scholar 

  66. Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57(19):1890–8. Epub 2011/05/07.

    Article  PubMed  Google Scholar 

  67. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32(2):141–56. Epub 2013/01/29.

    Article  PubMed  Google Scholar 

  68. Green CP, Porter CB, Bresnahan DR, Spertus JA. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire: a new health status measure for heart failure. J Am Coll Cardiol. 2000;35(5):1245–55. Epub 2000/04/12.

    Article  CAS  PubMed  Google Scholar 

  69. Rector TS. A conceptual model of quality of life in relation to heart failure. J Card Fail. 2005;11(3):173–6. Epub 2005/04/07.

    Article  PubMed  Google Scholar 

  70. Maciver J, Ross HJ. Quality of life and left ventricular assist device support. Circulation. 2012;126(7):866–74. Epub 2012/08/15.

    Article  PubMed  Google Scholar 

  71. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–53. Epub 2002/06/14.

    Article  PubMed  Google Scholar 

  72. Taylor AL, Ziesche S, Yancy C, Carson P, D'Agostino Jr R, Ferdinand K, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351(20):2049–57. Epub 2004/11/10.

    Article  CAS  PubMed  Google Scholar 

  73. Kugler C, Malehsa D, Tegtbur U, Guetzlaff E, Meyer AL, Bara C, et al. Health-related quality of life and exercise tolerance in recipients of heart transplants and left ventricular assist devices: a prospective, comparative study. J Heart Lung Transplant. 2011;30(2):204–10. Epub 2010/10/29.

    Article  PubMed  Google Scholar 

  74. Pinney SP. Timing isn’t everything: donor heart allocation in the present LVAD era. J Am Coll Cardiol. 2012;60(1):52–3. Epub 2012/05/01.

    Article  PubMed  Google Scholar 

  75. Dardas T, Mokadam NA, Pagani F, Aaronson K, Levy WC. Transplant registrants with implanted left ventricular assist devices have insufficient risk to justify elective organ procurement and transplantation network status 1 A time. J Am Coll Cardiol. 2012;60(1):36–43. Epub 2012/05/01.

    Article  PubMed  Google Scholar 

  76. Komoda T, Hetzer R, Lehmkuhl HB. Destiny of candidates for heart transplantation in the Eurotransplant heart allocation system. Eur J Cardiothorac Surg. 2008;34(2):301–6. discussion 6. Epub 2008/04/15.

    Article  PubMed  Google Scholar 

  77. Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino 3rd V, et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90(4):1263–9. discussion 9. Epub 2010/09/28.

    Article  PubMed  Google Scholar 

  78. Geisen U, Heilmann C, Beyersdorf F, Benk C, Berchtold-Herz M, Schlensak C, et al. Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg. 2008;33(4):679–84. Epub 2008/02/20.

    Article  PubMed  Google Scholar 

  79. Meyer AL, Malehsa D, Bara C, Budde U, Slaughter MS, Haverich A, et al. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail. 2010;3(6):675–81. Epub 2010/08/27.

    Article  PubMed  Google Scholar 

  80. Copeland H, Nolan PE, Covington D, Gustafson M, Smith R, Copeland JG. A method for anticoagulation of children on mechanical circulatory support. Artif Organs. 2011;35(11):1018–23. Epub 2011/11/22.

    Article  PubMed  Google Scholar 

  81. Pereira NL, Chen D, Kushwaha SS, Park SJ. Discontinuation of antithrombotic therapy for a year or more in patients with continuous-flow left ventricular assist devices. Interact Cardiovasc Thorac Surg. 2010;11(4):503–5. Epub 2010/07/20.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Saito S, Westaby S, Piggott D, Katsumata T, Dudnikov S, Robson D, et al. Reliable long-term non-pulsatile circulatory support without anticoagulation. Eur J Cardiothorac Surg. 2001;19(5):678–83. Epub 2001/05/10.

    Article  CAS  PubMed  Google Scholar 

  83. Boyle AJ, Russell SD, Teuteberg JJ, Slaughter MS, Moazami N, Pagani FD, et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant. 2009;28(9):881–7. Epub 2009/09/01.

    Article  PubMed  Google Scholar 

  84. Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;137(1):208–15. Epub 2009/01/22.

    Article  CAS  PubMed  Google Scholar 

  85. Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 1994;89(2):635–41. Epub 1994/02/01.

    Article  CAS  PubMed  Google Scholar 

  86. Aggarwal A, Pant R, Kumar S, Sharma P, Gallagher C, Tatooles AJ, et al. Incidence and management of gastrointestinal bleeding with continuous flow assist devices. Ann Thorac Surg. 2012;93(5):1534–40. Epub 2012/05/01.

    Article  PubMed  Google Scholar 

  87. Morgan JA, Paone G, Nemeh HW, Henry SE, Patel R, Vavra J, et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2012;31(7):715–8. Epub 2012/03/20.

    Article  PubMed  Google Scholar 

  88. Zucker MJ, Sabnani I, Baran DA, Balasubramanian S, Camacho M. Cardiac transplantation and/or mechanical circulatory support device placement using heparin anti-coagulation in the presence of acute heparin-induced thrombocytopenia. J Heart Lung Transplant. 2010;29(1):53–60. Epub 2009/10/13.

    Article  PubMed  Google Scholar 

  89. Adzic A, Patel SR, Maybaum S. Impact of adverse events on ventricular assist device outcomes. Curr Heart Fail Rep. 2013;10(1):89–100. Epub 2013/01/15.

    Article  PubMed  Google Scholar 

  90. MacGowan GA, Schueler S. Right heart failure after left ventricular assist device implantation: early and late. Curr Opin Cardiol. 2012;27(3):296–300. Epub 2012/02/14.

    Article  PubMed  Google Scholar 

  91. Holman WL. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS): what have we learned and what will we learn? Circulation. 2012;126(11):1401–6. Epub 2012/09/12.

    Article  PubMed  Google Scholar 

  92. Patlolla B, Beygui R, Haddad F. Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol. 2013;28(2):223–33. Epub 2013/01/23.

    Article  PubMed  Google Scholar 

  93. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24. Epub 2010/02/06.

    Article  PubMed  Google Scholar 

  94. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72. Epub 2008/05/31.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fitzpatrick 3rd JR, Frederick JR, Hsu VM, Kozin ED, O’Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92. Epub 2008/12/09.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63. discussion 63-4. Epub 2013/06/25.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Catena E, Milazzo F, Montorsi E, Bruschi G, Cannata A, Russo C, et al. Left ventricular support by axial flow pump: the echocardiographic approach to device malfunction. J Am Soc Echocardiogr. 2005;18(12):1422. Epub 2005/12/27.

    Article  PubMed  Google Scholar 

  98. Mishkin JD, Enriquez JR, Meyer DM, Bethea BT, Thibodeau JT, Patel PC, et al. Utilization of cardiac computed tomography angiography for the diagnosis of left ventricular assist device thrombosis. Circ Heart Fail. 2012;5(2):e27–9. Epub 2012/03/23.

    Article  PubMed  Google Scholar 

  99. Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2013; Epub 2013/11/29.

    Google Scholar 

  100. Aggarwal A, Gupta A, Kumar S, Baumblatt JA, Pauwaa S, Gallagher C, et al. Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO J. 2012;58(5):509–13. Epub 2012/07/24.

    Article  CAS  PubMed  Google Scholar 

  101. Holman WL, Kirklin JK, Naftel DC, Kormos RL, Desvign-Nickens P, Camacho MT, et al. Infection after implantation of pulsatile mechanical circulatory support devices. J Thorac Cardiovasc Surg. 2010;139(6):1632–6. e2. Epub 2010/04/07.

    Article  PubMed  Google Scholar 

  102. Nurozler F, Argenziano M, Oz MC, Naka Y. Fungal left ventricular assist device endocarditis. Ann Thorac Surg. 2001;71(2):614–8. Epub 2001/03/10.

    Article  CAS  PubMed  Google Scholar 

  103. Toda K, Fujita T, Domae K, Shimahara Y, Kobayashi J, Nakatani T. Late aortic insufficiency related to poor prognosis during left ventricular assist device support. Ann Thorac Surg. 2011;92(3):929–34. Epub 2011/08/30.

    Article  PubMed  Google Scholar 

  104. Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD, Kolias TJ. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail. 2010;3(6):668–74. Epub 2010/08/27.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol. 2009;296(3):H756–64. Epub 2009/01/20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Pinney MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Chaanine, A.H., Pinney, S.P. (2017). Mechanical Circulatory Support as a Bridge to Heart Transplantation. In: Eisen, H. (eds) Heart Failure. Springer, London. https://doi.org/10.1007/978-1-4471-4219-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4219-5_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4218-8

  • Online ISBN: 978-1-4471-4219-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics