Skip to main content
Log in

Impact of Adverse Events on Ventricular Assist Device Outcomes

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (AK Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Left ventricular assist devices have been proven to be superior to medical therapy for advanced heart failure patients awaiting heart transplantation and viable alternatives to transplantation for destination therapy patients. Improvements in the design of ventricular assist devices have been rewarded by a decrease in adverse events and an increase in survival. Despite significant progress, even the latest generation left ventricular assist devices are burdened by a significant long-term adverse events profile that will increasingly challenge physicians as patients survive longer on implantable mechanical circulatory support. In this review, we analyze the impact of long-term adverse events on clinical outcomes in the major trials of continuous flow left ventricular assist devices. We discuss several of the more pertinent and interesting adverse events, examine their potential causes, and explore their future implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–21. HeartMate II bridge to transplant approval trial: the 281 subjects include the study and early continued access protocol.

    PubMed  Google Scholar 

  2. • John R, Naka Y, Smedira NG, et al. Continuous flow left ventricular assist device outcomes in commercial use compared with the prior clinical trial. Ann Thorac Surg. 2011;92(4):1406–13. Comparison of 486 HMII bridge to transplant study and continued access protocol subjects, versus the first 1,496 subjects enrolled into INTERMACS.

    PubMed  Google Scholar 

  3. • Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. The HMII destination therapy approval trial.

    PubMed  CAS  Google Scholar 

  4. • Park SJ, Milano CA, Tatooles AJ, et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5(2):241–8. Comparison of the HMII destination therapy study subjects versus the initial 281 subjects in the continued access protocol.

    PubMed  Google Scholar 

  5. • Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–200. The HeartWare bridge to transplant approval trial.

    PubMed  Google Scholar 

  6. INTERMACS Appendix A-Adverse Event Definitions. Version 3.0. Available at http://www.uab.edu/intermacs/appendices/appendix-a; Accessed October 2012.

  7. FDA Executive Summary Prepared for the April 25, 2012 meeting of the Circulatory System Devices Panel P100047 HeartWare Ventricular Assist System HeartWare, Inc. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDevices/MedicalDevicesAdvisoryCommittee/CirculatorySystemDevicesPanel/UCM301222.pdf 2012.

  8. Agarwal R, Adatya S, Uriel N, Jorde UP. Clinical impact, diagnosis, and management of a disconnected outflow graft bend relief in a patient supported by the HeartMate II left ventricular assist system. J Heart Lung Transplant. 2012;31(11):1238–9.

    PubMed  Google Scholar 

  9. Eckman PM, John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation. 2012;125(24):3038–47.

    PubMed  Google Scholar 

  10. Boyle AJ, Russell SD, Teuteberg JJ, et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant. 2009;28(9):881–7.

    PubMed  Google Scholar 

  11. Pereira NL, Chen D, Kushwaha SS, Park SJ. Discontinuation of antithrombotic therapy for a year or more in patients with continuous-flow left ventricular assist devices. Interact Cardiovasc Thorac Surg. 2010;11(4):503–5.

    PubMed  Google Scholar 

  12. Catena E, Milazzo F, Montorsi E, et al. Left ventricular support by axial flow pump: the echocardiographic approach to device malfunction. J Am Soc Echocardiogr. 2005;18(12):1422.

    PubMed  Google Scholar 

  13. Paluszkiewicz L, Gursoy D, Spiliopoulos S, et al. HeartMate II ventricular assist device thrombosis-an echocardiographic approach to diagnosis: can Doppler evaluation of flow be useful? J Am Soc Echocardiogr. 2011;24(3):350 e1–4.

    Google Scholar 

  14. Paluszkiewicz L, Schulte-Eistrup S, Kortke H, Morshuis M, Gummert J. Thrombosis of the LVAD inflow cannula detected by transthoracic echocardiography: 2D and 3D thrombus visualization. Echocardiography. 2011;28(9):E194–5.

    PubMed  Google Scholar 

  15. Miyake Y, Sugioka K, Bussey CD, Di Tullio M, Homma S. Left ventricular mobile thrombus associated with ventricular assist device: diagnosis by transesophageal echocardiography. Circ J. 2004;68(4):383–4.

    PubMed  Google Scholar 

  16. Mishkin JD, Enriquez JR, Meyer DM, et al. Utilization of cardiac computed tomography angiography for the diagnosis of left ventricular assist device thrombosis. Circ Heart Fail. 2012;5(2):e27–9.

    PubMed  Google Scholar 

  17. •• Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–S39. White paper on the clinical management of axial flow LVADs.

    PubMed  Google Scholar 

  18. • Uriel N, Morrison KA, Garan AR, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the columbia ramp study. J Am Coll Cardiol. 2012;60(18):1764–75. Novel report of the use of echocardiography during ramp speed increases for the diagnosis of pump thrombus.

    PubMed  Google Scholar 

  19. Al-Quthami AH, Jumean M, Kociol R, et al. Eptifibatide for the treatment of HeartMate II left ventricular assist device thrombosis. Circ Heart Fail. 2012;5(4):e68–70.

    PubMed  CAS  Google Scholar 

  20. Thomas MD, Wood C, Lovett M, Dembo L, O’Driscoll G. Successful treatment of rotary pump thrombus with the glycoprotein IIb/IIIa inhibitor tirofiban. J Heart Lung Transplant. 2008;27(8):925–7.

    PubMed  Google Scholar 

  21. Meyer AL, Kuehn C, Weidemann J, et al. Thrombus formation in a HeartMate II left ventricular assist device. J Thorac Cardiovasc Surg. 2008;135(1):203–4.

    PubMed  Google Scholar 

  22. Rothenburger M, Wilhelm MJ, Hammel D, et al. Treatment of thrombus formation associated with the MicroMed DeBakey VAD using recombinant tissue plasminogen activator. Circulation. 2002;106(12 Suppl 1):I189–92.

    PubMed  Google Scholar 

  23. Ninios V, Visouli A, Pitsis A. Images in cardiovascular medicine. Repeated successful thrombolysis of a Jarvik 2000 left ventricular assist device in a patient with noncompaction cardiomyopathy. Circulation. 2010;121(3):e13–4.

    PubMed  Google Scholar 

  24. Kiernan MS, Pham DT, DeNofrio D, Kapur NK. Management of HeartWare left ventricular assist device thrombosis using intracavitary thrombolytics. J Thorac Cardiovasc Surg. 2011;142(3):712–4.

    PubMed  Google Scholar 

  25. Kamouh A, John R, Eckman P. Successful treatment of early thrombosis of HeartWare left ventricular assist device with intraventricular thrombolytics. Ann Thorac Surg. 2012;94(1):281–3.

    PubMed  Google Scholar 

  26. NIH Stroke Scale: National Institute of Neurological Disorders and Stroke. . Available at http://www.ninds.nih.gov/doctors/NIH_Stroke_Scale.pdf.; Accessed October 2012.

  27. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–7.

    PubMed  Google Scholar 

  28. Baldwin JT, Mann DL. NHLBI’s program for VAD therapy for moderately advanced heart failure: the REVIVE-IT pilot trial. J Card Fail. 2010;16(11):855–8.

    PubMed  Google Scholar 

  29. Saeed O, Patel J, Nucci C, et al. 771 Non Invasive Blood Pressure (BP) Measurement with the Terumo Elemano™ Is More Reliable during Return of Pulsatile Flow in Patients on Continuous Flow (CF) LVAD Support. J Heart Lung Transplant. 2012;31(4, Supplement):S263.

    Google Scholar 

  30. Rao KK, Haro GJ, Ayers CR, et al. 579 Blood Pressure Measurement in Patients with Continuous Flow LVADs: comparing the Doppler Sphygmomanometer, the Nexfin Device, and the Arterial Line. J Heart Lung Transplant. 2012;31(4, Supplement):S200–1.

    Google Scholar 

  31. Schulze PC, Bartels MN, Chung CJ, et al. 559 Increased Blood Pressure Variability in Patients Supported by Continuous Flow Left Ventricular Assist Devices: a Novel Vascular Phenotype in the Absence of Pulsatility? J Heart Lung Transplant. 2012;31(4, Supplement):S194.

    Google Scholar 

  32. Aggarwal A, Gupta A, Kumar S, et al. Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO J. 2012;58(5):509–13.

    PubMed  CAS  Google Scholar 

  33. Poston RS, Husain S, Sorce D, et al. LVAD bloodstream infections: therapeutic rationale for transplantation after LVAD infection. J Heart Lung Transplant. 2003;22(8):914–21.

    PubMed  Google Scholar 

  34. Toda K, Yonemoto Y, Fujita T, et al. Risk analysis of bloodstream infection during long-term left ventricular assist device support. Ann Thorac Surg. 2012;94(5):1387–93.

    PubMed  Google Scholar 

  35. Hannan MM, Husain S, Mattner F, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30(4):375–84.

    PubMed  Google Scholar 

  36. Kirklin JK, Naftel DC, Kormos RL, et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29(1):1–10.

    PubMed  Google Scholar 

  37. Holman WL, Pae WE, Teutenberg JJ, et al. INTERMACS: interval analysis of registry data. J Am Coll Surg. 2009;208(5):755–61. discussion 61–2.

    PubMed  Google Scholar 

  38. Nurozler F, Argenziano M, Oz MC, Naka Y. Fungal left ventricular assist device endocarditis. Ann Thorac Surg. 2001;71(2):614–8.

    PubMed  CAS  Google Scholar 

  39. Shoham S, Shaffer R, Sweet L, et al. Candidemia in patients with ventricular assist devices. Clin Infect Dis. 2007;44(2):e9–e12.

    PubMed  Google Scholar 

  40. Bagdasarian NG, Malani AN, Pagani FD, Malani PN. Fungemia associated with left ventricular assist device support. J Card Surg. 2009;24(6):763–5.

    PubMed  Google Scholar 

  41. Monkowski DH, Axelrod P, Fekete T, et al. Infections associated with ventricular assist devices: epidemiology and effect on prognosis after transplantation. Transpl Infect Dis. 2007;9(2):114–20.

    PubMed  CAS  Google Scholar 

  42. Simon D, Fischer S, Grossman A, et al. Left ventricular assist device-related infection: treatment and outcome. Clin Infect Dis. 2005;40(8):1108–15.

    PubMed  Google Scholar 

  43. Raymond AL, Kfoury AG, Bishop CJ, et al. Obesity and left ventricular assist device driveline exit site infection. ASAIO J. 2010;56(1):57–60.

    PubMed  Google Scholar 

  44. Malani PN, Dyke DB, Pagani FD, Chenoweth CE. Nosocomial infections in left ventricular assist device recipients. Clin Infect Dis. 2002;34(10):1295–300.

    PubMed  Google Scholar 

  45. Dang NC, Topkara VK, Kim BT, et al. Nutritional status in patients on left ventricular assist device support. J Thorac Cardiovasc Surg. 2005;130(5):e3–4.

    PubMed  Google Scholar 

  46. • Goldstein DJ, Naftel D, Holman W, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31(11):1151–7. INTERMACS analysis of 2006 CF LVAD patients: description of incidence, risk factors, and outcomes of percutaneous site infections.

    PubMed  Google Scholar 

  47. Holman WL. Microbiology of infection in mechanical circulatory support. Int J Artif Organs. 2007;30(9):764–70.

    PubMed  CAS  Google Scholar 

  48. Padera RF. Infection in ventricular assist devices: the role of biofilm. Cardiovasc Pathol. 2006;15(5):264–70.

    PubMed  CAS  Google Scholar 

  49. Walker PC, DePestel DD, Miles NA, Malani PN. Surgical infection prophylaxis for left ventricular assist device implantation. J Card Surg. 2011;26(4):440–3.

    PubMed  Google Scholar 

  50. Pamboukian SV, Tallaj JA, Brown RN, et al. Improvement in 2-year survival for ventricular assist device patients after implementation of an intensive surveillance protocol. J Heart Lung Transplant. 2011;30(8):879–87.

    PubMed  Google Scholar 

  51. Mehta SM, Pae Jr WE, Rosenberg G, et al. The LionHeart LVD-2000: a completely implanted left ventricular assist device for chronic circulatory support. Ann Thorac Surg. 2001;71(3 Suppl):S156–61. discussion S83–4.

    PubMed  CAS  Google Scholar 

  52. Pae WE, Connell JM, Adelowo A, et al. Does total implantability reduce infection with the use of a left ventricular assist device? The LionHeart experience in Europe. J Heart Lung Transplant. 2007;26(3):219–29.

    PubMed  Google Scholar 

  53. Fischer SA, Trenholme GM, Costanzo MR, Piccione W. Infectious complications in left ventricular assist device recipients. Clin Infect Dis. 1997;24(1):18–23.

    PubMed  CAS  Google Scholar 

  54. • Maniar S, Kondareddy S, Topkara VK. Left ventricular assist device-related infections: past, present and future. Expert Rev Med Devices. 2011;8(5):627–34. Comprehensive recent review of LVAD infections.

    PubMed  Google Scholar 

  55. •• Califano S, Pagani FD, Malani PN. Left ventricular assist device-associated infections. Infect Dis Clin North Am. 2012;26(1):77–87. Comprehensive recent review of LVAD infections.

    PubMed  Google Scholar 

  56. Vilchez RA, McEllistrem MC, Harrison LH, et al. Relapsing bacteremia in patients with ventricular assist device: an emergent complication of extended circulatory support. Ann Thorac Surg. 2001;72(1):96–101.

    PubMed  CAS  Google Scholar 

  57. Prendergast TW, Todd BA, Beyer 3rd AJ, et al. Management of left ventricular assist device infection with heart transplantation. Ann Thorac Surg. 1997;64(1):142–7.

    PubMed  CAS  Google Scholar 

  58. Schulman AR, Martens TP, Christos PJ, et al. Comparisons of infection complications between continuous flow and pulsatile flow left ventricular assist devices. J Thorac Cardiovasc Surg. 2007;133(3):841–2.

    PubMed  Google Scholar 

  59. Topkara VK, Kondareddy S, Malik F, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90(4):1270–7.

    PubMed  Google Scholar 

  60. Sinha P, Chen JM, Flannery M, et al. Infections during left ventricular assist device support do not affect posttransplant outcomes. Circulation. 2000;102(19 Suppl 3):III194–9.

    PubMed  CAS  Google Scholar 

  61. Chinn R, Dembitsky W, Eaton L, et al. Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J. 2005;51(4):461–70.

    PubMed  Google Scholar 

  62. Baradarian S, Stahovich M, Krause S, Adamson R, Dembitsky W. Case series: clinical management of persistent mechanical assist device driveline drainage using vacuum-assisted closure therapy. ASAIO J. 2006;52(3):354–6.

    PubMed  Google Scholar 

  63. Pasque MK, Hanselman T, Shelton K, et al. Surgical management of Novacor drive-line exit site infections. Ann Thorac Surg. 2002;74(4):1267–8.

    PubMed  Google Scholar 

  64. de Jonge KC, Laube HR, Dohmen PM, Ivancevic V, Konertz WF. Diagnosis and management of left ventricular assist device valve-endocarditis: LVAD valve replacement. Ann Thorac Surg. 2000;70(4):1404–5.

    PubMed  Google Scholar 

  65. Litzler PY, Manrique A, Etienne M, et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med. 2010;51(7):1044–8.

    PubMed  Google Scholar 

  66. Tjan TD, Asfour B, Hammel D, et al. Wound complications after left ventricular assist device implantation. Ann Thorac Surg. 2000;70(2):538–41.

    PubMed  CAS  Google Scholar 

  67. Yuh DD, Albaugh M, Ullrich S, Conte JV. Treatment of ventricular assist device driveline infection with vacuum-assisted closure system. Ann Thorac Surg. 2005;80(4):1493–5.

    PubMed  Google Scholar 

  68. Garatti A, Giuseppe B, Russo CF, Marco O, Ettore V. Drive-line exit-site infection in a patient with axial-flow pump support: successful management using vacuum-assisted therapy. J Heart Lung Transplant. 2007;26(9):956–9.

    PubMed  Google Scholar 

  69. McKellar SH, Allred BD, Marks JD, et al. Treatment of infected left ventricular assist device using antibiotic-impregnated beads. Ann Thorac Surg. 1999;67(2):554–5.

    PubMed  CAS  Google Scholar 

  70. Holman WL, Fix RJ, Foley BA, et al. Management of wound and left ventricular assist device pocket infection. Ann Thorac Surg. 1999;68(3):1080–2.

    PubMed  CAS  Google Scholar 

  71. Hutchinson OZ, Oz MC, Ascherman JA. The use of muscle flaps to treat left ventricular assist device infections. Plast Reconstr Surg. 2001;107(2):364–73.

    PubMed  CAS  Google Scholar 

  72. •• Suarez J, Patel CB, Felker GM, et al. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4(6):779–84. Recent comprehensive review of gastrointestinal bleeding in CF LVAD patients.

    PubMed  Google Scholar 

  73. John R, Kamdar F, Eckman P, et al. Lessons learned from experience with over 100 consecutive HeartMate II left ventricular assist devices. Ann Thorac Surg. 2011;92(5):1593–9. discussion 9–600.

    PubMed  Google Scholar 

  74. Demirozu ZT, Radovancevic R, Hochman LF, et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2011;30(8):849–53.

    PubMed  Google Scholar 

  75. Crow S, John R, Boyle A, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;137(1):208–15.

    PubMed  CAS  Google Scholar 

  76. Morgan JA, Paone G, Nemeh HW, et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2012;31(7):715–8.

    PubMed  Google Scholar 

  77. Patel SR, Rivera A, Patel J, et al. 74 Gastrointestinal Bleeding Is Not Associated with Pump Speed and Aortic Valve Opening in Patients Supported with the HeartMate II LVAD. J Heart Lung Transplant. 2012;31(4, Supplement):S34.

    Google Scholar 

  78. • Uriel N, Pak SW, Jorde UP, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56(15):1207–13. First large report of acquired von Willebrand deficiency in HMII recipients.

    PubMed  Google Scholar 

  79. Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 1994;89(2):635–41.

    PubMed  CAS  Google Scholar 

  80. Aggarwal A, Pant R, Kumar S, et al. Incidence and management of gastrointestinal bleeding with continuous flow assist devices. Ann Thorac Surg. 2012;93(5):1534–40.

    PubMed  Google Scholar 

  81. Wilcox CM, Truss CD. Gastrointestinal bleeding in patients receiving long-term anticoagulant therapy. Am J Med. 1988;84(4):683–90.

    PubMed  CAS  Google Scholar 

  82. Meyer AL, Malehsa D, Bara C, et al. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail. 2010;3(6):675–81.

    PubMed  Google Scholar 

  83. Crow S, Chen D, Milano C, et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90(4):1263–9.

    PubMed  Google Scholar 

  84. Strueber M, Malehsa D, Avsar M, et al. 453 Gastrointestinal Bleeding after Implantation of the HeartWare HVAD Left Ventricular Assist Device. J Heart Lung Transplant. 2011;30(4, Supplement):S154.

    Google Scholar 

  85. Coutance G, Repesse Y, Belin A, Massetti M. Acquired von Willebrand disease in Jarvik 2000 recipients: a single center experience. Int J Cardiol. 2012;159(1):57–8.

    PubMed  Google Scholar 

  86. Heyde E. Gastrointestinal Bleeding in Aortic Stenosis. N Engl J Med. 1958;259(4):196.

    Google Scholar 

  87. Warkentin TE, Moore JC, Morgan DG. Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet. 1992;340(8810):35–7.

    PubMed  CAS  Google Scholar 

  88. Vincentelli A, Susen S, Le Tourneau T, et al. Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med. 2003;349(4):343–9.

    PubMed  Google Scholar 

  89. Veyradier A, Balian A, Wolf M, et al. Abnormal von Willebrand factor in bleeding angiodysplasias of the digestive tract. Gastroenterology. 2001;120(2):346–53.

    PubMed  CAS  Google Scholar 

  90. Boley SJ, Sammartano R, Adams A, et al. On the nature and etiology of vascular ectasias of the colon. Degenerative lesions of aging. Gastroenterology. 1977;72(4 Pt 1):650–60.

    PubMed  CAS  Google Scholar 

  91. Cappell MS, Lebwohl O. Cessation of recurrent bleeding from gastrointestinal angiodysplasias after aortic valve replacement. Ann Intern Med. 1986;105(1):54–7.

    PubMed  CAS  Google Scholar 

  92. Kushnir VM, Sharma S, Ewald GA, et al. Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endosc. 2012;75(5):973–9.

    PubMed  Google Scholar 

  93. Sarosiek K, Bogar L, Hirose H, et al. 543 An Old Problem with a New Therapy: GI Bleeding in VAD Patients and Deep Bowel Enteroscopy (Double Balloon/Spiral Enteroscopy). J Heart Lung Transplant. 2012;31(4, Supplement):S188.

    Google Scholar 

  94. Geisen U, Heilmann C, Beyersdorf F, et al. Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg. 2008;33(4):679–84.

    PubMed  Google Scholar 

  95. Toda K, Fujita T, Domae K, et al. Late aortic insufficiency related to poor prognosis during left ventricular assist device support. Ann Thorac Surg. 2011;92(3):929–34.

    PubMed  Google Scholar 

  96. Pak SW, Uriel N, Takayama H, et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant. 2010;29(10):1172–6.

    PubMed  Google Scholar 

  97. Cowger J, Pagani FD, Haft JW, et al. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ Heart Fail. 2010;3(6):668–74.

    PubMed  Google Scholar 

  98. Soleimani B, Haouzi A, Manoskey A, et al. Development of aortic insufficiency in patients supported with continuous flow left ventricular assist devices. ASAIO J. 2012;58(4):326–9.

    PubMed  Google Scholar 

  99. • Mudd JO, Cuda JD, Halushka M, et al. Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1269–74. First series (9 patients) reporting aortic valve pathology during HMII support.

    PubMed  Google Scholar 

  100. Samuels LE, Thomas MP, Holmes EC, et al. Insufficiency of the native aortic valve and left ventricular assist system inflow valve after support with an implantable left ventricular assist system: signs, symptoms, and concerns. J Thorac Cardiovasc Surg. 2001;122(2):380–1.

    PubMed  CAS  Google Scholar 

  101. Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol. 2009;296(3):H756–64.

    PubMed  CAS  Google Scholar 

  102. May-Newman K, Hillen B, Dembitsky W. Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 2006;52(2):132–9.

    PubMed  Google Scholar 

  103. Murthy S, Bello R, Casazza D, Maybaum S, Goldstein D. 766 Echocardiographic and Pathological Correlates of Aortic Regurgitation in Continuous-Flow LVAD Support. J Heart Lung Transplant. 2012;31(4, Supplement):S261.

    Google Scholar 

  104. •• John R, Mantz K, Eckman P, Rose A, May-Newman K. Aortic valve pathophysiology during left ventricular assist device support. J Heart Lung Transplant. 2010;29(12):1321–9. Comprehensive review of aortic valve disease during CF LVAD support.

    PubMed  Google Scholar 

  105. Saeed O, Patel J, Rivera A, et al. Abstract 11343: Aortic Valve Opening Predicts Thrombotic Events during Continous Flow Left Ventricular Assist Device (CF-LVAD) Support. Circulation. 2012;126(A11343).

  106. Morgan JA, Brewer RJ, Nemeh HW, et al. Management of aortic valve insufficiency in patients supported by long-term continuous flow left ventricular assist devices. Ann Thorac Surg. 2012;94(5):1710–2.

    PubMed  Google Scholar 

  107. Feldman CM, Silver MA, Sobieski MA, Slaughter MS. Management of aortic insufficiency with continuous flow left ventricular assist devices: bioprosthetic valve replacement. J Heart Lung Transplant. 2006;25(12):1410–2.

    PubMed  Google Scholar 

  108. Russo MJ, Freed BH, Jeevanandam V, et al. Percutaneous transcatheter closure of the aortic valve to treat cardiogenic shock in a left ventricular assist device patient with severe aortic insufficiency. Ann Thorac Surg. 2012;94(3):985–8.

    PubMed  Google Scholar 

  109. Freed BH, Paul JD, Bhave NM, et al. Percutaneous transcatheter closure of the native aortic valve to treat de novo aortic insufficiency after implantation of a left ventricular assist device. JACC Cardiovasc Interv. 2012;5(3):358–9.

    PubMed  Google Scholar 

  110. Grohmann J, Blanke P, Benk C, Schlensak C. Trans-catheter closure of the native aortic valve with an Amplatzer Occluder to treat progressive aortic regurgitation after implantation of a left-ventricular assist device. Eur J Cardiothorac Surg. 2011;39(6):e181–3.

    PubMed  Google Scholar 

  111. D’Ancona G, Pasic M, Buz S, et al. TAVI for pure aortic valve insufficiency in a patient with a left ventricular assist device. Ann Thorac Surg. 2012;93(4):e89–91.

    PubMed  Google Scholar 

  112. Santini F, Forni A, Dandale R, et al. First successful management of aortic valve insufficiency associated with HeartMate II left ventricular assist device support by transfemoral CoreValve implantation: the Columbus’s egg? JACC Cardiovasc Interv. 2012;5(1):114–5.

    PubMed  Google Scholar 

  113. Park SJ, Liao KK, Segurola R, Madhu KP, Miller LW. Management of aortic insufficiency in patients with left ventricular assist devices: a simple coaptation stitch method (Park’s stitch). J Thorac Cardiovasc Surg. 2004;127(1):264–6.

    PubMed  Google Scholar 

  114. Goda A, Takayama H, Pak SW, et al. Aortic valve procedures at the time of ventricular assist device placement. Ann Thorac Surg. 2011;91(3):750–4.

    PubMed  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehal R. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adzic, A., Patel, S.R. & Maybaum, S. Impact of Adverse Events on Ventricular Assist Device Outcomes. Curr Heart Fail Rep 10, 89–100 (2013). https://doi.org/10.1007/s11897-012-0127-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0127-3

Keywords

Navigation