Skip to main content

Right Ventricular Pathobiology

  • Chapter
  • First Online:
The Right Heart

Abstract

Right ventricular (RV) function is a strong independent determinant of outcomes in a broad range of cardiopulmonary diseases. Despite this recognition, the underlying pathobiology of RV failure remains poorly understood and no RV-specific therapies exist for RV dysfunction. The variable response of RV function to different medical therapies and among etiologies of pulmonary hypertension suggests that elevated afterload is not the sole determinant of RV function. Various molecular mechanisms have been identified that contribute to RV failure. RV ischemia, neurohormonal activation, maladaptive myocardial hypertrophy, metabolic remodeling, and mitochondrial dysfunction are key pathogenic mechanisms that have been demonstrated in both experimental models and humans with RV dysfunction. Genetics may also contribute to RV dysfunction as in heritable pulmonary arterial hypertension and arrhythmogenic RV dysplasia. Metabolic dysregulation and neurohormonal antagonism are currently being tested as RV-specific therapeutic targets in PAH. More detailed understanding of the molecular underpinnings of RV failure will lead to additional therapeutic avenues. Molecular imaging tools such as positron emission tomography may provide a more mechanistic understanding of RV pathophysiology in vivo and allow translation of basic science findings to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borer JS, Bonow RO. Contemporary approach to aortic and mitral regurgitation. Circulation. 2003;108(20):2432–8. doi:10.1161/01.CIR.0000096400.00562.A3.

    Article  PubMed  Google Scholar 

  2. Ghio S, Gavazzi A, Campana C, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  3. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999;353(9162):1386–9.

    Article  CAS  PubMed  Google Scholar 

  4. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41. doi:10.1164/rccm.200604-547OC.

    Article  PubMed  Google Scholar 

  5. Voelkel NF, Quaife RA, Leinwand LA, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91. doi:10.1161/CIRCULATIONAHA.106.632208.

    Article  PubMed  Google Scholar 

  6. Hopkins WE, Ochoa LL, Richardson GW, Trulock EP. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant. 1996;15(1 Pt 1):100–5.

    CAS  PubMed  Google Scholar 

  7. Brittain EL, Hemnes AR, Keebler M, Lawson M, Byrd BF, Disalvo T. Right ventricular plasticity and functional imaging. Pulm Circ. 2012;2(3):309–26. doi:10.4103/2045-8932.101407.

    Article  PubMed  PubMed Central  Google Scholar 

  8. van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9. doi:10.1016/j.jacc.2011.06.068.

    Article  PubMed  Google Scholar 

  9. Bogaard HJ, Natarajan R, Henderson SC, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60. doi:10.1161/CIRCULATIONAHA.109.883843.

    Article  PubMed  Google Scholar 

  10. Watts JA, Marchick MR, Kline JA. Right ventricular heart failure from pulmonary embolism: key distinctions from chronic pulmonary hypertension. J Card Fail. 2010;16(3):250–9. doi:10.1016/j.cardfail.2009.11.008.

    Article  PubMed  Google Scholar 

  11. Tedford RJ, Mudd JO, Girgis RE, et al. Right ventricular dysfunction in systemic sclerosis associated pulmonary arterial hypertension. Circ Heart Fail. 2013;6(5):953–63. doi:10.1161/CIRCHEARTFAILURE.112.000008.

    Article  CAS  PubMed  Google Scholar 

  12. Mathai SC, Bueso M, Hummers LK, et al. Disproportionate elevation of N-terminal pro-brain natriuretic peptide in scleroderma-related pulmonary hypertension. Eur Respir J. 2010;35(1):95–104. doi:10.1183/09031936.00074309.

    Article  CAS  PubMed  Google Scholar 

  13. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–91.

    Article  PubMed  Google Scholar 

  14. Ross RS. Right ventricular hypertension as a cause of precordial pain. Am Heart J. 1961;61:134–5.

    Article  CAS  PubMed  Google Scholar 

  15. Gomez A, Bialostozky D, Zajarias A, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol. 2001;38(4):1137–42.

    Article  CAS  PubMed  Google Scholar 

  16. van Wolferen SA, Marcus JT, Westerhof N, et al. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J. 2008;29(1):120–7. doi:10.1093/eurheartj/ehm567.

    Article  PubMed  Google Scholar 

  17. Kajiya M, Hirota M, Inai Y, et al. Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292(6):H2737–44. doi:10.1152/ajpheart.00548.2006.

    Article  CAS  PubMed  Google Scholar 

  18. Ruiter G, Ying Wong Y, de Man FS, et al. Right ventricular oxygen supply parameters are decreased in human and experimental pulmonary hypertension. J Heart Lung Transplant. 2013;32(2):231–40. doi:10.1016/j.healun.2012.09.025.

    Article  PubMed  Google Scholar 

  19. Wensel R, Jilek C, Dörr M, et al. Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension. Eur Respir J. 2009;34(4):895–901. doi:10.1183/09031936.00145708.

    Article  CAS  PubMed  Google Scholar 

  20. Nootens M, Kaufmann E, Rector T, et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995;26(7):1581–5. doi:10.1016/0735-1097(95)00399-1.

    Article  CAS  PubMed  Google Scholar 

  21. Velez-Roa S, Ciarka A, Najem B, Vachiery J-L, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110(10):1308–12. doi:10.1161/01.CIR.0000140724.90898.D3.

    Article  PubMed  Google Scholar 

  22. Forfia PR, Mathai SC, Fisher MR, et al. Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2008;177(12):1364–9. doi:10.1164/rccm.200712-1876OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Man FS, Handoko ML, van Ballegoij JJM, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5(1):97–105. doi:10.1161/CIRCHEARTFAILURE.111.964494.

    Article  PubMed  Google Scholar 

  24. Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15(3):277–83. doi:10.1093/eurjhf/hfs173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maron BA, Zhang Y-Y, White K, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–74. doi:10.1161/CIRCULATIONAHA.112.094722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piao L, Fang Y-H, Parikh KS, et al. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation. 2012;126(24):2859–69. doi:10.1161/CIRCULATIONAHA.112.109868.

    Article  CAS  PubMed  Google Scholar 

  27. Piao L, Fang Y-H, Cadete VJJ, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl). 2010;88(1):47–60. doi:10.1007/s00109-009-0524-6.

    Article  CAS  Google Scholar 

  28. Drake JI, Bogaard HJ, Mizuno S, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol. 2011;45(6):1239–47. doi:10.1165/rcmb.2010-0412OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi:10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl). 2010;88(10):1011–20. doi:10.1007/s00109-010-0679-1.

    Article  CAS  Google Scholar 

  31. Oikawa M, Kagaya Y, Otani H, et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol. 2005;45(11):1849–55. doi:10.1016/j.jacc.2005.02.065.

    Article  CAS  PubMed  Google Scholar 

  32. Mielniczuk LM, Birnie D, Ziadi MC, et al. Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure. Circ Cardiovasc Imaging. 2011;4(1):59–66. doi:10.1161/CIRCIMAGING.109.905984.

    Article  PubMed  Google Scholar 

  33. Bokhari S, Raina A, Berman Rosenweig E, et al. Positron emission tomography imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2011;4(6):641–7. doi:10.1161/CIRCIMAGING.110.963207.

    Article  PubMed  Google Scholar 

  34. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fang YH, Piao L, Hong Z, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl). 2012;90(1):31–43. doi:10.1007/s00109-011-0804-9.

    Article  CAS  Google Scholar 

  36. Archer SL, Fang Y-H, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ. 2013;3(1):144–52. doi:10.4103/2045-8932.109960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gomez-Arroyo J, Mizuno S, Szczepanek K, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail. 2013;6(1):136–44. doi:10.1161/CIRCHEARTFAILURE.111.966127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagendran J, Gurtu V, Fu DZ, et al. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg. 2008;136(1):168–78, 178 e1–3. doi:10.1016/j.jtcvs.2008.01.040.

  39. McLaughlin VV, Presberg KW, Doyle RL, et al. Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):78S–92. doi:10.1378/chest.126.1_suppl.78S.

    Article  PubMed  Google Scholar 

  40. Bonnet S, Michelakis ED, Porter CJ, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 2006;113(22):2630–41. doi:10.1161/CIRCULATIONAHA.105.609008.

    Article  CAS  PubMed  Google Scholar 

  41. Nagendran J, Sutendra G, Paterson I, et al. Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ Res. 2013;112(2):347–54. doi:10.1161/CIRCRESAHA.111.300448.

    Article  CAS  PubMed  Google Scholar 

  42. Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–57. doi:10.1056/NEJMoa050010.

    Article  PubMed  Google Scholar 

  43. Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48. doi:10.1161/CIRCULATIONAHA.106.655266.

    Article  CAS  PubMed  Google Scholar 

  44. Hemnes AR, Zaiman A, Champion HC. PDE5A inhibition attenuates bleomycin-induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation. Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L24–33. doi:10.1152/ajplung.00245.2007.

    Article  CAS  PubMed  Google Scholar 

  45. Freed BH, Gomberg-Maitland M, Chandra S, et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson. 2012;14:11. doi:10.1186/1532-429X-14-11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Benza R, Biederman R, Murali S, Gupta H. Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2008;52(21):1683–92. doi:10.1016/j.jacc.2008.08.033.

    Article  PubMed  Google Scholar 

  47. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61. doi:10.1038/nm1613.

    Article  CAS  PubMed  Google Scholar 

  48. Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ. Mechanisms of right heart failure-A work in progress and a plea for failure prevention. Pulm Circ. 2013;3(1):137–43. doi:10.4103/2045-8932.109957.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hemnes AR, Maynard KB, Champion HC, et al. Testosterone negatively regulates right ventricular load stress responses in mice. Pulm Circ. 2012;2(3):352–8. doi:10.4103/2045-8932.101647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piao L, Fang Y-H, Parikh K, Ryan JJ, Toth PT, Archer SL. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J Mol Med (Berl). 2013;91:1185–97. doi:10.1007/s00109-013-1064-7.

    Article  CAS  Google Scholar 

  51. Brittain EL, Pugh ME, Wheeler LA, et al. Shorter survival in familial versus idiopathic pulmonary arterial hypertension is associated with hemodynamic markers of impaired right ventricular function. Pulm Circ. 2013;3(3):589–98. doi:10.1086/674326. PMID: 24618543.

    Article  PubMed  Google Scholar 

  52. Hemnes AR, Brittain EL, Trammell AW, et al. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med. 2014;189(3):325–34. doi:10.1164/rccm.201306-1086OC. PMID: 24274756.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson JA, Hemnes AR, Perrien DS, et al. Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;302(5):L474–84. doi:10.1152/ajplung.00202.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. West J, Fagan K, Steudel W, et al. Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res. 2004;94(8):1109–14. doi:10.1161/01.RES.0000126047.82846.20.

    Article  CAS  PubMed  Google Scholar 

  55. Hemnes AR, Fessel JP, Penner N, Gleaves L, Robinson L, West J. Universal expression of BMPR2 mutation is associated with impairment of right ventricular hypertrophy and steatosis in mice. Am J Respir Crit Care Med (abstr). 2012;185:A3454.

    Google Scholar 

  56. Brittain E, Fessel J, Fox K, et al. Bone morphogenetic protein receptor type II-associated heritable pulmonary arterial hypertension is associated with fatty acid oxidation defects and cardiac steatosis. Circulation (Abstract). 2012;126, A14564.

    Google Scholar 

  57. Basso C, Corrado D, Marcus FI, Nava A, Thiene G. Arrhythmogenic right ventricular cardiomyopathy. Lancet. 2009;373(9671):1289–300. doi:10.1016/S0140-6736(09)60256-7.

    Article  PubMed  Google Scholar 

  58. Corrado D, Basso C, Pilichou K, Thiene G. Molecular biology and clinical management of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart. 2011;97(7):530–9. doi:10.1136/hrt.2010.193276.

    Article  CAS  PubMed  Google Scholar 

  59. Archer SL. Riociguat for pulmonary hypertension – a glass half full. N Engl J Med. 2013;369(4):386–8. doi:10.1056/NEJMe1306684.

    Article  CAS  PubMed  Google Scholar 

  60. Lewis GD, Farrell L, Wood MJ, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2(33):33ra37. doi:10.1126/scitranslmed.3001006.

  61. Lewis GD, Wei R, Liu E, et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest. 2008;118(10):3503–12. doi:10.1172/JCI35111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna R. Hemnes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Brittain, E.L., Hemnes, A.R. (2014). Right Ventricular Pathobiology. In: Gaine, S., Naeije, R., Peacock, A. (eds) The Right Heart. Springer, London. https://doi.org/10.1007/978-1-4471-2398-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2398-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2397-2

  • Online ISBN: 978-1-4471-2398-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics