Skip to main content

Mesenchymal-to-Epithelial Transitions in Development and Cancer

  • Protocol
  • First Online:
The Epithelial-to Mesenchymal Transition

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2179))

Abstract

The evolutionary emergence of the mesenchymal phenotype greatly increased the complexity of tissue architecture and composition in early Metazoan species. At the molecular level, an epithelial-to-mesenchymal transition (EMT) was permitted by the innovation of specific transcription factors whose expression is sufficient to repress the epithelial transcriptional program. The reverse process, mesenchymal-to-epithelial transition (MET), involves direct inhibition of EMT transcription factors by numerous mechanisms including tissue-specific MET-inducing transcription factors (MET-TFs), micro-RNAs, and changes to cell and tissue architecture, thus providing an elegant solution to the need for tight temporal and spatial control over EMT and MET events during development and adult tissue homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15(4):225–242. https://doi.org/10.1038/nrm3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Campbell K, Casanova J (2016) A common framework for EMT and collective cell migration. Development 143(23):4291–4300. https://doi.org/10.1242/dev.139071

    Article  CAS  PubMed  Google Scholar 

  3. Huang RY, Guilford P, Thiery JP (2012) Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 125(Pt 19):4417–4422. https://doi.org/10.1242/jcs.099697

    Article  CAS  PubMed  Google Scholar 

  4. Pei D, Shu X, Gassama-Diagne A, Thiery JP (2019) Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol 21(1):44–53. https://doi.org/10.1038/s41556-018-0195-z

    Article  CAS  PubMed  Google Scholar 

  5. Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116(Pt 1):17–27

    Article  CAS  PubMed  Google Scholar 

  6. Rikitake Y, Mandai K, Takai Y (2012) The role of nectins in different types of cell-cell adhesion. J Cell Sci 125(Pt 16):3713–3722. https://doi.org/10.1242/jcs.099572

    Article  CAS  PubMed  Google Scholar 

  7. Roignot J, Peng X, Mostov K (2013) Polarity in mammalian epithelial morphogenesis. Cold Spring Harb Perspect Biol 5(2). https://doi.org/10.1101/cshperspect.a013789

  8. Nakaya Y, Sukowati EW, Wu Y, Sheng G (2008) RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10(7):765–775. https://doi.org/10.1038/ncb1739

    Article  CAS  PubMed  Google Scholar 

  9. Eckert JJ, Fleming TP (2008) Tight junction biogenesis during early development. Biochim Biophys Acta 1778(3):717–728. https://doi.org/10.1016/j.bbamem.2007.09.031

    Article  CAS  PubMed  Google Scholar 

  10. Frisch SM (1997) The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays 19(8):705–709. https://doi.org/10.1002/bies.950190811

    Article  CAS  PubMed  Google Scholar 

  11. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119(6):1438–1449. https://doi.org/10.1172/JCI38019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McMahon AP (2016) Development of the mammalian kidney. Curr Top Dev Biol 117:31–64. https://doi.org/10.1016/bs.ctdb.2015.10.010

    Article  PubMed  PubMed Central  Google Scholar 

  13. Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142(6):1028–1042. https://doi.org/10.1242/dev.087643

    Article  CAS  PubMed  Google Scholar 

  14. Ewald AJ, Huebner RJ, Palsdottir H, Lee JK, Perez MJ, Jorgens DM, Tauscher AN, Cheung KJ, Werb Z, Auer M (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125(Pt 11):2638–2654. https://doi.org/10.1242/jcs.096875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perez-Pomares JM, Munoz-Chapuli R (2002) Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in metazoans. Anat Rec 268(3):343–351. https://doi.org/10.1002/ar.10165

    Article  CAS  PubMed  Google Scholar 

  16. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635. https://doi.org/10.1038/ng1789

    Article  CAS  PubMed  Google Scholar 

  17. Behrens J, Lowrick O, Klein-Hitpass L, Birchmeier W (1991) The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci U S A 88(24):11495–11499. https://doi.org/10.1073/pnas.88.24.11495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ringwald M, Baribault H, Schmidt C, Kemler R (1991) The structure of the gene coding for the mouse cell adhesion molecule uvomorulin. Nucleic Acids Res 19(23):6533–6539. https://doi.org/10.1093/nar/19.23.6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bussemakers MJ, Giroldi LA, van Bokhoven A, Schalken JA (1994) Transcriptional regulation of the human E-cadherin gene in human prostate cancer cell lines: characterization of the human E-cadherin gene promoter. Biochem Biophys Res Commun 203(2):1284–1290

    Article  CAS  PubMed  Google Scholar 

  20. Hennig G, Lowrick O, Birchmeier W, Behrens J (1996) Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 271(1):595–602. https://doi.org/10.1074/jbc.271.1.595

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigo I, Cato AC, Cano A (1999) Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 248(2):358–371. https://doi.org/10.1006/excr.1999.4438

    Article  CAS  PubMed  Google Scholar 

  22. Faraldo ML, Rodrigo I, Behrens J, Birchmeier W, Cano A (1997) Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol Carcinog 20(1):33–47

    Article  CAS  PubMed  Google Scholar 

  23. Batsche E, Muchardt C, Behrens J, Hurst HC, Cremisi C (1998) RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 18(7):3647–3658. https://doi.org/10.1128/mcb.18.7.3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartz B, Melnikova VO, Tellez C, Mourad-Zeidan A, Blehm K, Zhao YJ, McCarty M, Adam L, Bar-Eli M (2007) Loss of AP-2alpha results in deregulation of E-cadherin and MMP-9 and an increase in tumorigenicity of colon cancer cells in vivo. Oncogene 26(28):4049–4058. https://doi.org/10.1038/sj.onc.1210193

    Article  CAS  PubMed  Google Scholar 

  25. Leask A, Byrne C, Fuchs E (1991) Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A 88(18):7948–7952. https://doi.org/10.1073/pnas.88.18.7948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi I, Carey TS, Wilson CA, Knott JG (2012) Transcription factor AP-2gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 139(24):4623–4632. https://doi.org/10.1242/dev.086645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stemmler MP, Hecht A, Kemler R (2005) E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development 132(5):965–976. https://doi.org/10.1242/dev.01662

    Article  CAS  PubMed  Google Scholar 

  28. Stemmler MP, Hecht A, Kinzel B, Kemler R (2003) Analysis of regulatory elements of E-cadherin with reporter gene constructs in transgenic mouse embryos. Dev Dyn 227(2):238–245. https://doi.org/10.1002/dvdy.10301

    Article  CAS  PubMed  Google Scholar 

  29. Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, Hulselmans G, Potier D, Wouters J, Taskiran II, Paciello G, Gonzalez-Blas CB, Koldere D, Aibar S, Halder G, Aerts S (2018) The transcription factor grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nat Genet 50(7):1011–1020. https://doi.org/10.1038/s41588-018-0140-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giroldi LA, Bringuier PP, de Weijert M, Jansen C, van Bokhoven A, Schalken JA (1997) Role of E boxes in the repression of E-cadherin expression. Biochem Biophys Res Commun 241(2):453–458. https://doi.org/10.1006/bbrc.1997.7831

    Article  CAS  PubMed  Google Scholar 

  31. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89. https://doi.org/10.1038/35000034

    Article  CAS  PubMed  Google Scholar 

  32. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83. https://doi.org/10.1038/35000025

    Article  CAS  PubMed  Google Scholar 

  33. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with snail and E47 repressors. J Cell Sci 116(Pt 3):499–511

    Article  CAS  PubMed  Google Scholar 

  34. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62(6):1613–1618

    CAS  PubMed  Google Scholar 

  35. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385. https://doi.org/10.1038/sj.onc.1208429

    Article  CAS  PubMed  Google Scholar 

  36. Grooteclaes ML, Frisch SM (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19(33):3823–3828. https://doi.org/10.1038/sj.onc.1203721

    Article  CAS  PubMed  Google Scholar 

  37. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939. https://doi.org/10.1016/j.cell.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  39. Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G (2017) Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet 33(12):943–959. https://doi.org/10.1016/j.tig.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  40. Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP (2012) G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 122(4):1469–1486. https://doi.org/10.1172/JCI57349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin T, Ponn A, Hu X, Law BK, Lu J (2010) Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29(35):4896–4904. https://doi.org/10.1038/onc.2010.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24(1):306–319. https://doi.org/10.1128/mcb.24.1.306-319.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N, Escriva M, Hernandez-Munoz I, Di Croce L, Helin K, Garcia de Herreros A, Peiro S (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28(15):4772–4781. https://doi.org/10.1128/MCB.00323-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, Zhang HB, Liao YJ, Zheng F, Zhu W, Liu TH, Bian XW, Guan XY, Lin MC, Zeng MS, Zeng YX, Kung HF, Xie D (2012) EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and snail to inhibit E-cadherin. Oncogene 31(5):583–594. https://doi.org/10.1038/onc.2011.254

    Article  CAS  PubMed  Google Scholar 

  45. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988. https://doi.org/10.1038/sj.onc.1210508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T (2008) The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68(2):537–544. https://doi.org/10.1158/0008-5472.CAN-07-5682

    Article  CAS  PubMed  Google Scholar 

  47. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F, Berx G (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33(20):6566–6578. https://doi.org/10.1093/nar/gki965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whiteman EL, Liu CJ, Fearon ER, Margolis B (2008) The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene 27(27):3875–3879. https://doi.org/10.1038/onc.2008.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65(14):6237–6244. https://doi.org/10.1158/0008-5472.CAN-04-3545

    Article  PubMed  Google Scholar 

  50. Ohkubo T, Ozawa M (2004) The transcription factor snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117(Pt 9):1675–1685. https://doi.org/10.1242/jcs.01004

    Article  CAS  PubMed  Google Scholar 

  51. Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by snail. J Cell Sci 116(Pt 10):1959–1967. https://doi.org/10.1242/jcs.00389

    Article  CAS  PubMed  Google Scholar 

  52. Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO, Reina M, Cano A, Fabre M, Vilaro S (2006) The transcription factors slug and snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 394(Pt 2):449–457. https://doi.org/10.1042/BJ20050591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428. https://doi.org/10.1038/nrc2131

    Article  CAS  PubMed  Google Scholar 

  54. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT, Aziz K, Auer M, Tran PT, Bader JS, Ewald AJ (2014) Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 204(5):839–856. https://doi.org/10.1083/jcb.201306088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564. https://doi.org/10.1126/science.1203543

    Article  CAS  PubMed  Google Scholar 

  56. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128–134. https://doi.org/10.1038/nrc.2017.118

    Article  CAS  PubMed  Google Scholar 

  57. Campbell K (2018) Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 55:30–35. https://doi.org/10.1016/j.ceb.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, Gorin MA, Verdone JE, Pienta KJ, Bader JS, Ewald AJ (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A 113(7):E854–E863. https://doi.org/10.1073/pnas.1508541113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. https://doi.org/10.1016/j.cell.2014.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pyrgaki C, Liu A, Niswander L (2011) Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion. Dev Biol 353(1):38–49. https://doi.org/10.1016/j.ydbio.2011.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Werth M, Walentin K, Aue A, Schonheit J, Wuebken A, Pode-Shakked N, Vilianovitch L, Erdmann B, Dekel B, Bader M, Barasch J, Rosenbauer F, Luft FC, Schmidt-Ott KM (2010) The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development 137(22):3835–3845. https://doi.org/10.1242/dev.055483

    Article  CAS  PubMed  Google Scholar 

  62. Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M, Chen W, Rabien A, Kilic E, Schulzke JD, Schumann M, Schmidt-Ott KM (2015) A Grainyhead-like 2/Ovo-like 2 pathway regulates renal epithelial barrier function and lumen expansion. J Am Soc Nephrol 26(11):2704–2715. https://doi.org/10.1681/ASN.2014080759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao X, Vockley CM, Pauli F, Newberry KM, Xue Y, Randell SH, Reddy TE, Hogan BL (2013) Evidence for multiple roles for grainyhead-like 2 in the establishment and maintenance of human mucociliary airway epithelium.[corrected]. Proc Natl Acad Sci U S A 110(23):9356–9361. https://doi.org/10.1073/pnas.1307589110

    Article  PubMed  PubMed Central  Google Scholar 

  64. Senga K, Mostov KE, Mitaka T, Miyajima A, Tanimizu N (2012) Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol Biol Cell 23(15):2845–2855. https://doi.org/10.1091/mbc.E12-02-0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mlacki M, Kikulska A, Krzywinska E, Pawlak M, Wilanowski T (2015) Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer. Exp Biol Med 240(11):1396–1401. https://doi.org/10.1177/1535370215588924

    Article  CAS  Google Scholar 

  66. Cieply B, Riley P, Pifer PM, Widmeyer J, Addison JB, Ivanov AV, Denvir J, Frisch SM (2012) Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res 72(9):2440–2453. https://doi.org/10.1158/0008-5472.CAN-11-4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chung VY, Tan TZ, Tan M, Wong MK, Kuay KT, Yang Z, Ye J, Muller J, Koh CM, Guccione E, Thiery JP, Huang RY (2016) GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 6:19943. https://doi.org/10.1038/srep19943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nevil M, Bondra ER, Schulz KN, Kaplan T, Harrison MM (2017) Stable binding of the conserved transcription factor grainy head to its target genes throughout Drosophila melanogaster development. Genetics 205(2):605–620. https://doi.org/10.1534/genetics.116.195685

    Article  CAS  PubMed  Google Scholar 

  69. Boglev Y, Wilanowski T, Caddy J, Parekh V, Auden A, Darido C, Hislop NR, Cangkrama M, Ting SB, Jane SM (2011) The unique and cooperative roles of the grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity. Dev Biol 349(2):512–522. https://doi.org/10.1016/j.ydbio.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  70. Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, Dai X (2014) Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 29(1):59–74. https://doi.org/10.1016/j.devcel.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee B, Villarreal-Ponce A, Fallahi M, Ovadia J, Sun P, Yu QC, Ito S, Sinha S, Nie Q, Dai X (2014) Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev Cell 29(1):47–58. https://doi.org/10.1016/j.devcel.2014.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kitazawa K, Hikichi T, Nakamura T, Mitsunaga K, Tanaka A, Nakamura M, Yamakawa T, Furukawa S, Takasaka M, Goshima N, Watanabe A, Okita K, Kawasaki S, Ueno M, Kinoshita S, Masui S (2016) OVOL2 maintains the transcriptional program of human corneal epithelium by suppressing epithelial-to-mesenchymal transition. Cell Rep 15(6):1359–1368. https://doi.org/10.1016/j.celrep.2016.04.020

    Article  CAS  PubMed  Google Scholar 

  73. Dai X, Schonbaum C, Degenstein L, Bai W, Mahowald A, Fuchs E (1998) The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev 12(21):3452–3463. https://doi.org/10.1101/gad.12.21.3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nair M, Bilanchone V, Ortt K, Sinha S, Dai X (2007) Ovol1 represses its own transcription by competing with transcription activator c-Myb and by recruiting histone deacetylase activity. Nucleic Acids Res 35(5):1687–1697. https://doi.org/10.1093/nar/gkl1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X (2015) An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput Biol 11(11):e1004569. https://doi.org/10.1371/journal.pcbi.1004569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Watanabe K, Liu Y, Noguchi S, Murray M, Chang JC, Kishima M, Nishimura H, Hashimoto K, Minoda A, Suzuki H (2019) OVOL2 induces mesenchymal-to-epithelial transition in fibroblasts and enhances cell-state reprogramming towards epithelial lineages. Sci Rep 9(1):6490. https://doi.org/10.1038/s41598-019-43021-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chakrabarti R, Hwang J, Andres Blanco M, Wei Y, Lukacisin M, Romano RA, Smalley K, Liu S, Yang Q, Ibrahim T, Mercatali L, Amadori D, Haffty BG, Sinha S, Kang Y (2012) Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 14(11):1212–1222. https://doi.org/10.1038/ncb2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yeung TL, Leung CS, Wong KK, Gutierrez-Hartmann A, Kwong J, Gershenson DM, Mok SC (2017) ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 8(10):16951–16963. https://doi.org/10.18632/oncotarget.15208

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gondkar K, Patel K, Krishnappa S, Patil A, Nair B, Sundaram GM, Zea TT, Kumar P (2019) E74 like ETS transcription factor 3 (ELF3) is a negative regulator of epithelial- mesenchymal transition in bladder carcinoma. Cancer Biomark 25(2):223–232. https://doi.org/10.3233/CBM-190013

    Article  CAS  PubMed  Google Scholar 

  80. Ng AY, Waring P, Ristevski S, Wang C, Wilson T, Pritchard M, Hertzog P, Kola I (2002) Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology 122(5):1455–1466

    Article  CAS  PubMed  Google Scholar 

  81. Oliver JR, Kushwah R, Wu J, Pan J, Cutz E, Yeger H, Waddell TK, Hu J (2011) Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara cell-specific injury. Lab Invest 91(10):1514–1529. https://doi.org/10.1038/labinvest.2011.100

    Article  CAS  PubMed  Google Scholar 

  82. Albino D, Longoni N, Curti L, Mello-Grand M, Pinton S, Civenni G, Thalmann G, D'Ambrosio G, Sarti M, Sessa F, Chiorino G, Catapano CV, Carbone GM (2012) ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res 72(11):2889–2900. https://doi.org/10.1158/0008-5472.CAN-12-0212

    Article  CAS  PubMed  Google Scholar 

  83. Tymms MJ, Ng AY, Thomas RS, Schutte BC, Zhou J, Eyre HJ, Sutherland GR, Seth A, Rosenberg M, Papas T, Debouck C, Kola I (1997) A novel epithelial-expressed ETS gene, ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to 1q32.2 and expression in tissues and cancer. Oncogene 15(20):2449–2462. https://doi.org/10.1038/sj.onc.1201427

    Article  CAS  PubMed  Google Scholar 

  84. Oliver JR, Kushwah R, Hu J (2012) Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. Lab Invest 92(3):320–330. https://doi.org/10.1038/labinvest.2011.186

    Article  CAS  PubMed  Google Scholar 

  85. Laffin B, Wellberg E, Kwak HI, Burghardt RC, Metz RP, Gustafson T, Schedin P, Porter WW (2008) Loss of singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal transition associated with up-regulation of slug and matrix metalloprotease 2. Mol Cell Biol 28(6):1936–1946. https://doi.org/10.1128/MCB.01701-07

    Article  CAS  PubMed  Google Scholar 

  86. Acloque H, Ocana OH, Matheu A, Rizzoti K, Wise C, Lovell-Badge R, Nieto MA (2011) Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev Cell 21(3):546–558. https://doi.org/10.1016/j.devcel.2011.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barrallo-Gimeno A, Nieto MA (2005) The snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132(14):3151–3161. https://doi.org/10.1242/dev.01907

    Article  CAS  PubMed  Google Scholar 

  88. Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JR (2010) The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol 10:101. https://doi.org/10.1186/1471-2148-10-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barrallo-Gimeno A, Nieto MA (2009) Evolutionary history of the snail/scratch superfamily. Trends Genet 25(6):248–252. https://doi.org/10.1016/j.tig.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  90. Pattabiraman DR, Bierie B, Kober KI, Thiru P, Krall JA, Zill C, Reinhardt F, Tam WL, Weinberg RA (2016) Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science 351(6277):aad3680. https://doi.org/10.1126/science.aad3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907. https://doi.org/10.1101/gad.1640608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. https://doi.org/10.1038/ncb1722

    Article  CAS  PubMed  Google Scholar 

  93. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854. https://doi.org/10.1158/0008-5472.CAN-08-1942

    Article  CAS  PubMed  Google Scholar 

  94. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589. https://doi.org/10.1038/embor.2008.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abba ML, Patil N, Leupold JH, Allgayer H (2016) MicroRNA regulation of epithelial to mesenchymal transition. J Clin Med 5(1). https://doi.org/10.3390/jcm5010008

  96. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6(10):931–940. https://doi.org/10.1038/ncb1173

    Article  CAS  PubMed  Google Scholar 

  97. Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24(19):3446–3458. https://doi.org/10.1038/sj.emboj.7600781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jung HY, Fattet L, Tsai JH, Kajimoto T, Chang Q, Newton AC, Yang J (2019) Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol 21(3):359–371. https://doi.org/10.1038/s41556-019-0291-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weng M, Wieschaus E (2016) Myosin-dependent remodeling of adherens junctions protects junctions from snail-dependent disassembly. J Cell Biol 212(2):219–229. https://doi.org/10.1083/jcb.201508056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Campbell K, Casanova J, Skaer H (2010) Mesenchymal-to-epithelial transition of intercalating cells in drosophila renal tubules depends on polarity cues from epithelial neighbours. Mech Dev 127(7-8):345–357. https://doi.org/10.1016/j.mod.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M (1987) Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329(6137):341–343. https://doi.org/10.1038/329341a0

    Article  CAS  PubMed  Google Scholar 

  102. Mege RM, Matsuzaki F, Gallin WJ, Goldberg JI, Cunningham BA, Edelman GM (1988) Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc Natl Acad Sci U S A 85(19):7274–7278. https://doi.org/10.1073/pnas.85.19.7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Auersperg N, Pan J, Grove BD, Peterson T, Fisher J, Maines-Bandiera S, Somasiri A, Roskelley CD (1999) E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci U S A 96(11):6249–6254. https://doi.org/10.1073/pnas.96.11.6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McCrea PD, Gottardi CJ (2016) Beyond beta-catenin: prospects for a larger catenin network in the nucleus. Nat Rev Mol Cell Biol 17(1):55–64. https://doi.org/10.1038/nrm.2015.3

    Article  CAS  PubMed  Google Scholar 

  105. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A (2003) Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, slug, and MAPK. J Cell Biol 163(4):847–857. https://doi.org/10.1083/jcb.200308162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pece S, Gutkind JS (2000) Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275(52):41227–41233. https://doi.org/10.1074/jbc.M006578200

    Article  CAS  PubMed  Google Scholar 

  107. Rubsam M, Mertz AF, Kubo A, Marg S, Jungst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M, Ziegler W, Amagai M, Wickstrom SA, Niessen CM (2017) E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 8(1):1250. https://doi.org/10.1038/s41467-017-01170-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63. https://doi.org/10.1016/j.stem.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  109. Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77. https://doi.org/10.1016/j.stem.2010.04.015

    Article  CAS  PubMed  Google Scholar 

  110. Li Q, Hutchins AP, Chen Y, Li S, Shan Y, Liao B, Zheng D, Shi X, Li Y, Chan WY, Pan G, Wei S, Shu X, Pei D (2017) A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat Commun 8:15166. https://doi.org/10.1038/ncomms15166

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, Buganim Y, Kaji K, Garcia P (2018) Fine-tuning Mybl2 is required for proper mesenchymal-to-epithelial transition during somatic reprogramming. Cell Rep 24(6):1496–1511. e1498. https://doi.org/10.1016/j.celrep.2018.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Downing TL, Soto J, Morez C, Houssin T, Fritz A, Yuan F, Chu J, Patel S, Schaffer DV, Li S (2013) Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater 12(12):1154–1162. https://doi.org/10.1038/nmat3777

    Article  CAS  PubMed  Google Scholar 

  113. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18(3):246–254. https://doi.org/10.1038/ncb3312

    Article  CAS  PubMed  Google Scholar 

  114. Shaw TJ, Martin P (2016) Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 42:29–37. https://doi.org/10.1016/j.ceb.2016.04.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding: Work in the Röper lab is supported by the Medical Research Council (file reference number U105178780 and BSF30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John-Poul Ng-Blichfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ng-Blichfeldt, JP., Röper, K. (2021). Mesenchymal-to-Epithelial Transitions in Development and Cancer. In: Campbell, K., Theveneau, E. (eds) The Epithelial-to Mesenchymal Transition. Methods in Molecular Biology, vol 2179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0779-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0779-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0778-7

  • Online ISBN: 978-1-0716-0779-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics