Skip to main content

Cloning and Detection of Genomic Retrozymes and Their circRNA Intermediates

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2167))

Abstract

Retrozymes are a novel family of non-autonomous retrotransposable elements that contain hammerhead ribozyme motifs. These retroelements are found widespread in eukaryotic genomes, with active copies present in many species, which rely on other autonomous transposons for mobilization. Contrary to other retrotransposons, transcription of retrozymes in vivo leads to the formation and accumulation of circular RNAs, which can be readily detected by RNA blotting. In this chapter, we describe the procedures needed to carry out the cloning of genomic retrozymes, and to detect by northern blot their circular RNA retrotransposition intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de la Peña M, Garcia-Robles I, Cervera A (2017) The hammerhead ribozyme: a long history for a short RNA. Molecules 22(1). https://doi.org/10.3390/molecules22010078

  2. de la Peña M, Garcia-Robles I (2010) Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16(10):1943–1950. https://doi.org/10.1261/rna.2130310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seehafer C, Kalweit A, Steger G, Graf S, Hammann C (2011) From alpaca to zebrafish: hammerhead ribozymes wherever you look. RNA 17(1):21–26. https://doi.org/10.1261/rna.2429911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G, Breaker RR (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7(5):e1002031. https://doi.org/10.1371/journal.pcbi.1002031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammann C, Luptak A, Perreault J, de la Peña M (2012) The ubiquitous hammerhead ribozyme. RNA 18(5):871–885. https://doi.org/10.1261/rna.031401.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de la Peña M, Garcia-Robles I (2010) Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep 11(9):711–716. https://doi.org/10.1038/embor.2010.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cervera A, de la Peña M (2014) Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs. Mol Biol Evol 31(11):2941–2947. https://doi.org/10.1093/molbev/msu232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cervera A, Urbina D, de la Peña M (2016) Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Genome Biol 17(1):135. https://doi.org/10.1186/s13059-016-1002-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de la Peña M, Cervera A (2017) Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: the enemy at home. RNA Biol 14(8):985–991. https://doi.org/10.1080/15476286.2017.1321730

    Article  PubMed  PubMed Central  Google Scholar 

  10. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  11. Pallas V, Sanchez-Navarro J, Varga A, Aparicio F, James D (2009) Multiplex polymerase chain reaction (PCR) and real-time multiplex PCR for the simultaneous detection of plant viruses. Methods Mol Biol 508:193–208. https://doi.org/10.1007/978-1-59745-062-1_16

    Article  CAS  PubMed  Google Scholar 

  12. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2003) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  13. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5(2):69–76. https://doi.org/10.1007/BF00020088

    Article  CAS  PubMed  Google Scholar 

  14. The Addgene Team (2017) Common cloning techniques. Plasmids 101: a desktop resource (3rd Ed.)

    Google Scholar 

  15. Sangha JS, Gu K, Kaur J, Yin Z (2010) An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC Res Notes 3:126. https://doi.org/10.1186/1756-0500-3-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nohales MA, Molina-Serrano D, Flores R, Daros JA (2012) Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 86(15):8269–8276. https://doi.org/10.1128/JVI.00629-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. BioLabs NE (2019) Cleavage close to the end of DNA fragments. https://www.neb.com/tools-and-resources/usage-guidelines/cleavage-close-to-the-end-of-dna-fragments#chart-E. Accessed 25 Feb 2019

  18. Kalweit A, Przybilski R, Seehafer C, de la Peña M, Hammann C (2012) Characterization of hammerhead ribozyme reactions. Methods Mol Biol 848:5–20. https://doi.org/10.1007/978-1-61779-545-9_2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank María Pedrote for her excellent technical assistance. This work was funded by the Ministerio de Ciencia, Innovación y Universidades of Spain and FEDER (grant BFU2017-87370-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos de la Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cervera, A., de la Peña, M. (2021). Cloning and Detection of Genomic Retrozymes and Their circRNA Intermediates. In: Scarborough, R.J., Gatignol, A. (eds) Ribozymes. Methods in Molecular Biology, vol 2167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0716-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0716-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0715-2

  • Online ISBN: 978-1-0716-0716-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics