Skip to main content

The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Kleiner, B.-I. Dalenbäck, and U.P. Svensson. Auralization – an overview. J. Audio Eng. Soc., 41(11):861–875, Nov. 1993.

    Google Scholar 

  2. J.-M. Jot. Real-time spatial processing of sounds for music, multimedia and interactive human–computer interfaces. Multimedia Syst., Special Issue Audio Multimedia, 7(1):55–69, 1999.

    Google Scholar 

  3. W.G. Gardner. Reverberation algorithms. In M. Kahrs and K. Brandenburg, editors, Applications of Digital Signal Processing to Audio and Acoustics, pp. 85–131. Kluwer Academic Publishers, Norwell, MA, 1997.

    Google Scholar 

  4. A. Pietrzyk. Computer modeling of the sound field in small rooms. Proceedings of the AES 15th International Conference on Audio, Acoustics & Small Spaces, pp. 24–31, Copenhagen, Denmark, Oct. 31–Nov. 2, 1998.

    Google Scholar 

  5. D. Botteldooren. Finite-difference time-domain simulation of low-frequency room acoustic problems. J. Acoust. Soc. Am., 98(6):3302–3308, 1995.

    Article  ADS  Google Scholar 

  6. L. Savioja, J. Backman, A. Järvinen, and T. Takala. Waveguide mesh method for low-frequency simulation of room acoustics. Proceedings of the 15th International Congress Acoustics on (ICA ’95), volume 2, pp. 637–640, Trondheim, Norway, June 1995.

    Google Scholar 

  7. L. Savioja. Modeling Techniques for Virtual Acoustics. PhD thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory, report TML-A3, 1999.

    Google Scholar 

  8. A. Krokstad, S. Strom, and S. Sorsdal. Calculating the acoustical room response by the use of a ray tracing technique. J. Sound Vib., 8(1):118–125, 1968.

    Article  ADS  Google Scholar 

  9. A. Kulowski. Algorithmic representation of the ray tracing technique. Appl. Acoust., 18(6):449–469, 1985.

    Article  Google Scholar 

  10. T.A. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. West, G. Pingali, P. Min, and A. Ngan. A beam tracing method for interactive architectural acoustics. J. Acoust. Soc. Am., 115(2):739–756, February 2004.

    Google Scholar 

  11. J.B. Allen and D.A. Berkley. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am., 65(4):943–950, 1979.

    Article  ADS  Google Scholar 

  12. J. Borish. Extension of the image model to arbitrary polyhedra. J. Acoust. Soc. Am., 75(6):1827–1836, 1984.

    Article  ADS  Google Scholar 

  13. U.P. Svensson and U.R. Kristiansen. Computational modeling and simulation of acoustic spaces. AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio, pp. 11–30, Espoo, Finland, June 15–17, 2002.

    Google Scholar 

  14. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen. Creating interactive virtual acoustic environments. J. Audio Eng. Soc., 47(9):675–705, 1999.

    Google Scholar 

  15. T. Lokki. Physically-Based Auralization – Design, Implementation, and Evaluation. PhD thesis, Helsinki University of Technology, Telecommunications Software and Multimedia Laboratory, report TML-A5, 2002. Available at http://lib.hut.fi/Diss/2002/ isbn9512261588/.

    Google Scholar 

  16. H. Strauss. Implementing doppler shifts for virtual auditory environments. The 104th Audio Engineering Society (AES) Convention, Amsterdam, the Netherlands, May 16–19, 1998. Preprint no. 4687.

    Google Scholar 

  17. T. Lokki, L. Savioja, J. Huopaniemi, R. Väänänen, and T. Takala. Creating interactive virtual auditory environments. IEEE Comput. Graph. Appl., 22(4):49–57, July/Aug. 2002.

    Google Scholar 

  18. M. Kompis and N. Dillier. Simulating transfer functions in a reverberant room including source directivity and head-shadow effects. J. Acoust. Soc. Am., 93(5):2779–2787, May 1993.

    Google Scholar 

  19. J. Huopaniemi, K. Kettunen, and J. Rahkonen. Measurement and modeling techniques for directional sound radiation from the mouth. Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA ’99), pp. 183–186, Mohonk Mountain House, New Paltz, New York, Oct. 17–20, 1999.

    Google Scholar 

  20. J.-M. Jot, V. Larcher, and O. Warusfel. Digital signal processing issues in the context of binaural and transaural stereophony. The 98th Audio Engineering Society (AES) Convention, Paris, France, 1995. Preprint no. 3980.

    Google Scholar 

  21. M. Karjalainen, J. Huopaniemi, and V. Välimäki. Direction-dependent physical modeling of musical instruments. Proceedings of the 15th International Congress on Acoustics (ICA ’95), pp. 451–454, Trondheim, Norway, June 1995.

    Google Scholar 

  22. U.K. Laine, M. Karjalainen, and T. Altosaar. Warped linear prediction (WLP) in speech and audio processing. Proceedings of the International Conference on Acoustics, Speech, Signal Processing (ICASSP’94), volume 3, pp. 349–352, Adelaide, Australia, April 19–22, 1994.

    Google Scholar 

  23. A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U.K. Laine, and J. Huopaniemi. Frequency-warped signal processing for audio applications. J. Audio Eng. Soc., 48(11):1011–1031, Nov. 2000.

    Google Scholar 

  24. ISO Standard 9613-1. Acoustics – Attenuation of Sound During Propagation Outdoors – Part 1: Calculation of the Absorption of Sound by the Atmosphere. 1993.

    Google Scholar 

  25. J. Huopaniemi, L. Savioja, and M. Karjalainen. Modeling of reflections and air absorption in acoustical spaces – a digital filter design approach. Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA’97), Mohonk, New Paltz, New York, Oct. 19–22, 1997.

    Google Scholar 

  26. A.D. Pierce. Acoustics – An Introduction to Its Physical Principles and Applications. The Acoustical Society of America, 2nd ed., 1994.

    Google Scholar 

  27. T.I. Laakso, V. Välimäki, M. Karjalainen, and U.K. Laine. Splitting the unit delay – tools for fractional delay filter design. IEEE Signal Process. Mag., 13(1):30–60, Jan. 1996.

    Google Scholar 

  28. U.P. Svensson, R.I. Fred, and J. Vanderkooy. Analytic secondary source model of edge diffraction impulse responses. J. Acoust. Soc. Am., 106(5):2331–2344, 1999.

    Article  ADS  Google Scholar 

  29. T. Lokki, U.P. Svensson, and L. Savioja. An efficient auralization of edge diffraction. AES 21st International Conference on Architectural Acoustics and Sound Reinforcement, pp. 166–172, St. Petersburg, Russia, June 1–3, 2002.

    Google Scholar 

  30. D.R. Begault 3-D Sound for Virtual Reality and Multimedia. AP Professional, Cambridge, MA, 1994.

    Google Scholar 

  31. M.R. Schroeder. Natural-sounding artificial reverberation. J. Audio Eng. Soc., 10(3):219–223, 1962.

    MathSciNet  Google Scholar 

  32. J.-M. Jot. Etude et réalisation d’un spatialisateur de sons par modéles physique et perceptifs. PhD thesis, l’Ecole Nationale Superieure des Telecommunications, Télécom Paris 92 E 019, Sept. 1992.

    Google Scholar 

  33. S. Van Duyne and J.O. Smith. Physical modeling with the 2-D digital waveguide mesh. Proceedings of the International Computer Music Conference, pp. 40–47, Tokyo, Japan, Sept. 1993.

    Google Scholar 

  34. L. Savioja, T. Rinne, and T. Takala. Simulation of room acoustics with a 3-D finite difference mesh. Proceedings of the International Computer Music Conference, pp. 463–466, Aarhus, Denmark, Sept. 1994.

    Google Scholar 

  35. J. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, New York, NY, 1989.

    MATH  Google Scholar 

  36. F. Fontana and D. Rocchesso. A new formulation of the 2D-waveguide mesh for percussion instruments. Proceedings of the XI Colloquium on Musical Informatics, pp. 27–30, Bologna, Italy, Nov. 1995.

    Google Scholar 

  37. S. Van Duyne and J.O. Smith. The 3D tetrahedral digital waveguide mesh with musical applications. Proceedings of the International Computer Music Conference, pp. 9–16, Hong Kong, Aug. 1996.

    Google Scholar 

  38. L. Savioja and V. Välimäki. Reducing the dispersion error in the digital waveguide mesh using interpolation and frequency-warping techniques. IEEE Trans. Speech Audio Process., 8(2):184–194, March 2000.

    Google Scholar 

  39. L. Savioja and V. Välimäki. Interpolated rectangular 3-D digital waveguide mesh algorithms with frequency warping. IEEE Trans. Speech Audio Process., 11(6):783–790, Nov. 2003.

    Google Scholar 

  40. A. Kelloniemi, L. Savioja, and V. Välimäki. Spatial filter-based absorbing boundary for the 2-d digital waveguide mesh. IEEE Signal Process. Lett., 12(2):126–129, 2005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lokki, T., Savioja, L. (2008). Virtual Acoustics. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_39

Download citation

Publish with us

Policies and ethics