Skip to main content

Virtual Room Acoustics

  • Chapter
  • First Online:
Sound - Perception - Performance

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 1))

Abstract

The technology for creating an Acoustic Virtual Reality for wide variety of applications has been developed in the last decade. An important requirement of Virtual Reality is the multimodal approach which includes vision, sound, tactile and haptic stimuli. The process of creating a physical stimulus based on computer data is called “rendering”. The development of rendering and reproduction of acoustic stimuli in VR is now at a stage where integration of spatial room sound is feasible by using PCs. This applies to multi-channel binaural synthesis as well as to full room-acoustic simulation algorithms. In this chapter the basic concepts of real-time room acoustic simulation, early reflections’ and spatial reverberation rendering, binaural reproduction technology and dynamic realtime audio signal processing are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Lentz, T. (2008). Binaural technology for virtual reality. Ph.D. dissertation, RWTH Aachen University.

    Google Scholar 

  • Pelzer, S., & Vorländer, M. (2010). Frequency- and time-dependent geometry for real-time auralizations. In 20th International Congress on Acoustics (ICA), Sydney, Australia.

    Google Scholar 

  • Schröder, D., & Vorländer, M. (2007). Hybrid method for room acoustic simulation in real-time. In Proceedings of the 20th International Congress on Acoustics (ICA), Spain.

    Google Scholar 

  • Vorländer, M. (1989). Simulation of the transient and steady state sound propagation in rooms using a new combined sound particle—image source algorithm. The Journal of the Acoustical Society of America, 86, 172–178.

    Article  Google Scholar 

  • Vorländer, M. (1995). International round robin on room acoustical computer simulations. In: Proceedings of 15th International Congress on Acoustics, Trondheim, Norway.

    Google Scholar 

  • Vorländer, M. (2008). Auralization: Fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Berlin: Springer.

    Google Scholar 

  • Wefers, F., & Berg, J. (2010). High-performance real-time FIR-filtering using fast convolution on graphics hard-ware. In Conference on Digital Audio Effects (DaFX).

    Google Scholar 

  • Wefers, F., & Vorländer, M. (2012). Optimal filter partitions for non-uniformly partitioned convolution. AES 45th International Conference on Time-Frequency Audio Processing, Helsinki, Finland.

    Google Scholar 

  • [Online]: www.vrca.rwth-aachen.de.

Further Reading

  • Schroeder, M. R., Atal, B. S.,& Bird, C. (1962). Digital computers in room acoustics. In Proceedings of the 4th International. Congress on Acoustics, Copenhagen, Denmark.

    Google Scholar 

  • Vian, J., & van Maercke, D. (1986). Calculation of the room impulse response using a ray-tracing method. In Proceedings of the ICA Symposium on Acoustics and Theatre Planning for the Performing Arts, Vancouver, Canada.

    Google Scholar 

  • Cruz-Neira, C., Sandin, D., DeFanti, T., Kenyon, R., & Hart, J. (1992). The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM, 35, 64–72.

    Article  Google Scholar 

  • Dalenbäck, B.-I. (1995). A new model for room acoustic prediction and auralization. Ph.D. dissertation, Chalmers University, Gothenburg, Sweden.

    Google Scholar 

  • Gardner, W. G. (1995). Efficient convolution without input-output delay. Journal of the Audio Engineering Society (JAES), 43, 127–136.

    Google Scholar 

  • Egelmeers, G. P. M., & Sommen, P. (1996). A new method for efficient convolution in frequency domain by non-uniform partitioning for adaptive filtering. IEEE Transactions on signal processing, 44.

    Google Scholar 

  • Stephenson, U. (1996). Quantized pryamidal beam tracing—a new algorithm for room acoustics and noise immission prognosis. ACTA ACUSTICA united with ACUSTICA, 82, 517–525.

    Google Scholar 

  • Svensson, U. P., Fred, R. I., & Vanderkooy, J. (1999). An analytic secondary source model of edge diffraction impulse responses. Journal of the Acoustical Society of America, 106, 2331–2344.

    Article  Google Scholar 

  • Müller-Tomfelde, C, (2001). Time-varying filter in non-uniform block convolution. In Proceedings of the Conference on Digital Audio Effects (DAFX-01).

    Google Scholar 

  • Tsingos, N., Funkhouser, T., Ngan, A., & Carlbom, I. (2001). Modeling acoustics in virtual environments using the uniform theory of diffraction. ACM Computer Graphics, SIGGRAPH’01 Proceedings (545–552).

    Google Scholar 

  • Lokki, T. (2002). Physically-based auralization—design, implementation, and evaluation. Ph.D. dissertation, Helsinki University of Technology.

    Google Scholar 

  • García, G. (2002). Optimal filter partition for efficient convolution with short input/output delay. In Proceedings of 113th AES convention.

    Google Scholar 

  • Hammershøi, D., & Møller, H. (2002). Methods for bin-aural recording and reproduction. Acustica united with Acta Acustica, 88, 303.

    Google Scholar 

  • Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., & Gross, M. (2003). Optimized Spatial Hashing for Collision Detection of Deformable Objects. VMV ‘03.

    Google Scholar 

  • Tsingos, N., Gallo, E., & Drettakis, G. (2004). Perceptual audio rendering of complex virtual environments. ACM Transactions on Graphics (SIGGRAPH Conference Proceedings), 3(23).

    Google Scholar 

  • Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., Sondhi, M., West, J. E., et al. (2004). A beam tracing method for interactive architectural acoustics. Journal of the Acoustical Society of America, 115, 739–756.

    Article  Google Scholar 

  • Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T., & Bischof, C. (2004). Viracocha: An efficient parallelization framework for large-scale CFD post-processing in virtual environments. In Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, Magdeburg, Germany.

    Google Scholar 

  • Thaden, R. (2005). Auralisation in building acoustics, Ph.D. dissertation, RWTH Aachen University.

    Google Scholar 

  • Lentz, T. (2005). Performance of spatial audio using dynamic cross-talk cancellation. In 119th AES Convention, New York, NY, USA.

    Google Scholar 

  • Cox, T. J., Dalenbäck, B.-I. L., Antonio, P. D., Embrechts, J. J., Jeon, J. Y., Mommertz, E., et al. (2006). A tutorial on scattering and diffusion coefficients for room acoustic surfaces. Acta Acustica united with ACUSTICA, 92, 1–15.

    Google Scholar 

  • Schröder, D., & Lentz, T. (2006). Real-time processing of image sources using binary space partitioning. Journal of the Audio Engineering Society (JAES), 54(7/8), 604–619.

    Google Scholar 

  • Raghuvanshi, N., & Lin, M. (2006). Interactive sound synthesis for large scale environments. In Proceedings of the Symposium on Interactive 3D Graphics and Games, Red-wood City, USA.

    Google Scholar 

  • Lentz, T. (2006). Dynamic crosstalk cancellation for binaural synthesis in virtual reality environments. Journal of the Audio Engineering Society (JAES), 54(4), 283–293.

    Google Scholar 

  • Schröder, D., & Vorländer, M. (2007). Hybrid method for room acoustic simulation in real-time. In Proceedings of the 20th International Congress on Acoustics (ICA), Madrid, Spain.

    Google Scholar 

  • Stephenson, U. M., & Svensson, U. P. (2007). An improved energetic approach to diffraction based on the uncertainty principle. In Proceedings of the 19th International Congress on Acoustics, Madrid, Spain.

    Google Scholar 

  • Schröder, D., Dross, P.,& Vorländer, M. (2007). A fast reverberation estimator for virtual environments. In Proceedings of the 30th AES International Conference, Saariselkä, Finland.

    Google Scholar 

  • Assenmacher, I., & Kuhlen, T. (2008). The vista virtual reality toolkit. In Proceedings of the IEEE VR SEARIS, (pp. 23–26).

    Google Scholar 

  • Schröder, D., & Assenmacher, I. (2008). Real-time auralization of modifiable rooms. In 2nd ASA-EAA joint conference Acoustics, Paris, France.

    Google Scholar 

  • Lundén, P. (2008). Universe acoustic simulation system: Interactive realtime room acoustic simulation in dynamic 3d environments. The Journal of the Acoustical Society of America (JASA), 123(5), 3937–3937.

    Article  Google Scholar 

  • Rausch, D., & Assenmacher, I. (2008). A sketch-based interface for architectural modification in virtual environments. In 5th Workshop VR/AR, Magdeburg, Germany.

    Google Scholar 

  • Noisternig, M., Katz, B., Siltanen, S., & Savioja, L. (2008). Framework for real-time auralization in architectural acoustics. Acta Acustica United with Acustica, 94(6), 1000–1015.

    Article  Google Scholar 

  • Rindel, J.-H. (2009). Auralisation of a symphony orchestra—the chain from musical instruments to the eardrums. In EAA Symposium on Auralization, Espoo, Finland.

    Google Scholar 

  • Schröder, D., & Pohl, A. (2009). Real-time hybrid simulation method including edge diffraction. In Proceedings of the EAA Auralization Symposium, Espoo, Finland.

    Google Scholar 

  • Wefers, F., & Schröder, D. (2009). Real-time auralization of coupled rooms. In Proceedings of the EAA Auralization Symposium, Espoo, Finland.

    Google Scholar 

  • Tsingos, N. (2009). Using programmable graphics hardware for auralization. In Proceedings of the EAA Symposium on Auralization, Espoo, Finland.

    Google Scholar 

  • Schröder, D., Svensson, P., & Vorländer, M. (2010). Open measurements of edge diffraction from a noise barrier scale model. In Proceedings of the International Symposium on Room Acoustics (ISRA), Melbourne, Australia.

    Google Scholar 

  • Schröder, D., Ryba, A., & Vorländer, M. (2010). Spatial data structures for dynamic acoustic virtual reality. In Proceedings of the 20th International Congress on Acoustics (ICA), Sydney, Australia.

    Google Scholar 

  • Schröder, D., Ryba, A., & Vorländer, M. (2010). Real-time auralization of dynamically changing environments. Submitted to Acta Acustica united with Acustica.

    Google Scholar 

  • Dalenbäck, B.-I. (2010). Engineering principles and techniques in room acoustics prediction. In Baltic-Nordic Acoustics Meeting, Bergen, Norway.

    Google Scholar 

  • Assenmacher, I., Rausch, D., & Kuhlen, T. (2010). On device driver architectures for virtual reality toolkits, presence: Teleoperators and virtual environments, 23, 83–95.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for funding a series of projects. Torsten Kuhlen and his team at Virtual Reality Center Aachen (VRCA) are acknowledged for excellent and smooth collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vorländer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vorländer, M., Pelzer, S., Wefers, F. (2013). Virtual Room Acoustics. In: Bader, R. (eds) Sound - Perception - Performance. Current Research in Systematic Musicology, vol 1. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00107-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00107-4_9

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00106-7

  • Online ISBN: 978-3-319-00107-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics