Skip to main content

Diabetic Neuropathy

  • Chapter
  • First Online:
Principles of Diabetes Mellitus

Abstract

Diabetes mellitus (DM) is estimated to affect approximately 20 million Americans (90% with type 2 and 10% with type 1 DM) and is the most common cause of peripheral neuropathy in the United States. There is evidence to suggest that the incidence of neuropathy increases with the duration and severity of disease, and that strict glycemic control delays its development and progression, particularly in patients with type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986.

    Article  Google Scholar 

  2. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes Care. 1978;1:168–188.

    Google Scholar 

  3. Martin CL, Albers J, Herman WH, et al. Neuropathy among the Diabetes Control and Complications Trial Cohort 8 years after trial completion. Diabetes Care. 2006;29:340–344.

    Article  PubMed  Google Scholar 

  4. Boulton AJM, Vinik AT, Arezzo JC, et al. Diabetic neuropathies. A statement by the American Diabetes Association. Diabetes Care. 2005;28:956–962.

    Article  PubMed  Google Scholar 

  5. Dyck PJ, Karnes JL, O‘Brien PC, et al. The Rochester Diabetic Neuropathy Study: reassessment of tests and criteria for diagnosis and staged severity. Neurology. 1992;42:1164–1170.

    PubMed  CAS  Google Scholar 

  6. Sinnreich M, Taylor BV, Dyck PJB. Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist. 2005;11:63–79.

    Article  PubMed  Google Scholar 

  7. Melton LJ III, Dyck PJ. Epidemiology. In: Dyck PJ, Thomas PK, et al. (eds). Diabetic Neuropathy. 2nd Ed. Philadelphia: WB Saunders; 1999:239–252.

    Google Scholar 

  8. Windebank AJ, Feldman EL. Diabetes and the nervous system. In: Aminoff M (ed). Neurology and General Medicine. 3rd Ed. Philadelphia: Churchill Livingstone; 2001.

    Google Scholar 

  9. Halar EM, Graf RJ, Halter JB, et al. Diabetic neuropathy: a clinical, laboratory, and electrodiagnostic study. Arch Phys Med Rehabil. 1982;63:298–303.

    PubMed  CAS  Google Scholar 

  10. Niakan E, Harati Y. Sympathetic skin response in diabetic peripheral neuropathy. Muscle Nerve. 1988;11:261–264.

    Article  PubMed  CAS  Google Scholar 

  11. Lauria G, Lombardi R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. BMJ. 2007;334:1159–1162.

    Article  PubMed  Google Scholar 

  12. Umapathi T, Tan WL, Loke SC, et al. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve. 2007;35:591–598.

    Article  PubMed  CAS  Google Scholar 

  13. Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care. 2001;24:1448–1453.

    Article  PubMed  CAS  Google Scholar 

  14. Low PA, Benrud-Larson LM, Sletten DM, et al. Autonomic symptoms and diabetic neuropathy. Diabetes Care. 2004;27:2942–2947.

    Article  PubMed  Google Scholar 

  15. Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q J Med. 1980;49:95–108.

    PubMed  CAS  Google Scholar 

  16. Aronson D. Pharmacologic modulation of autonomic tone: implications for the diabetic patient. Diabetologia. 1997;40:476–481.

    Article  PubMed  CAS  Google Scholar 

  17. Schnell O, Schwarz A, Becker DM, Standl E. Autoantibodies against autonomic nervous tissues in type 2 diabetes. Exp Clin Endocrinol Diabetes (Germany). 2000;108:181–186.

    Article  CAS  Google Scholar 

  18. Wein TH, Albers JW. Diabetic neuropathies. Phys Med and Rehab Clinics of North America. 2001;12(2):307–320.

    CAS  Google Scholar 

  19. Pascoe MK, Low PA, Windebank AJ, Litchy WJ. Subacute diabetic proximal neuropathy. Mayo Clin Proc. 1997;72:1123–1132.

    Article  PubMed  CAS  Google Scholar 

  20. Said G, Goulon-Goeau C, Lacroix C, Moulonguet A. Nerve biopsy findings in different patterns of proximal diabetic neuropathy. Ann Neurol. 1994;35:559–569.

    Article  PubMed  CAS  Google Scholar 

  21. Dyck PJB, Windebank AJ. Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve. 2002;25:477–491.

    Article  PubMed  Google Scholar 

  22. Kawagashira Y, Watanabe H, Oki Y, et al. Intravenous immunoglobulin therapy markedly ameliorates muscle weakness and severe pain in proximal diabetic neuropathy. J Neurol Neurosurg Psychiatry. 2007;78:899–901.

    Article  PubMed  CAS  Google Scholar 

  23. Schaublin GA, Michet CJ Jr, Dyck PJ, Burns TM. An update on the classification and treatment of vasculitic neuropathy. Lancet Neurol. 2005;4:853–865.

    Article  PubMed  Google Scholar 

  24. Dyck JB, O’Brien PC, Bosch EP, et al. Results of a controlled trial of IV methylprednisolone in diabetic lumbosacral radiculoplexus neuropathy (DLRPN): a preliminary indication of efficacy. J Peripher Nerv Syst. 2005;10(Suppl 1).

    Google Scholar 

  25. Stewart JD. Diabetic truncal neuropathy: topography of the sensory deficit. Ann Neurol. 1989;25:233–238.

    Article  PubMed  CAS  Google Scholar 

  26. Sun SF, Streib EW. Diabetic thoracoabdominal neuropathy: clinical and electrodiagnostic features. Ann Neurol. 1981;9:75.

    Article  PubMed  CAS  Google Scholar 

  27. Longstreth GF. Diabetic thoracic polyradiculopathy. Best Pract Res Clin Gastroenterol. 2005;19:275–281.

    Article  PubMed  Google Scholar 

  28. Katz JS, Saperstein DS, Wolfe G, et al. Cervicobrachial involvement in diabetic radiculoplexopathy. Muscle Nerve. 2001;24:794–798.

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein JE, Cogan DG. Diabetic ophthalmoplegia with special reference to the pupil. Arch Ophthalmol. 1960;64:592.

    PubMed  CAS  Google Scholar 

  30. Jacobson DM. Pupil involvement in patients with diabetes-associated oculomotor nerve palsy. Arch Ophthalmol. 1998;116:723–727.

    PubMed  CAS  Google Scholar 

  31. Richards BW, Jones FR, Younge BR. Causes and prognosis in 4,278 cases of paralysis of the oculomotor, trochlear, and abducens cranial nerves. Am J Ophthalmol. 1992;113:489.

    PubMed  CAS  Google Scholar 

  32. Kanazawa A, Haginomori S, Takamaki A, et al. Prognosis for Bell’s palsy: a comparison of diabetic and nondiabetic patients. Acta Otolaryngol. 2007;127:888–891.

    Article  PubMed  Google Scholar 

  33. Stamboulis E, Vassilopoulos D, Kalfakis N. Symptomatic focal mononeuropathies in diabetic patients: increased or not? J Neurol. 2005;252:448–452.

    Article  PubMed  Google Scholar 

  34. Dahlin LB, Meiri KF, McLean WG, et al. Effects of nerve compression on fast axonal transport in streptozotocin-induced diabetes mellitus. Diabetologia. 1986;29:181–185.

    Article  PubMed  CAS  Google Scholar 

  35. Ozkul Y, Sabuncu T, Kocabey Y, et al. Outcomes of carpal tunnel release in diabetic and non-diabetic patients. Acta Neurol Scand. 2002;106:168–172.

    Article  PubMed  CAS  Google Scholar 

  36. Shahani B, Spalding JMK. Diabetes mellitus presenting with bilateral foot-drop. Lancet. 1969;2:930–931.

    Article  PubMed  CAS  Google Scholar 

  37. Judzewitsch RG, Jaspan JB, Polonsky KS, et al. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med. 1983;308:119–125.

    Article  PubMed  CAS  Google Scholar 

  38. Boulton AJM, Levin SR, Comstock JP. A multicenter trial of the aldose-reductase inhibitor, tolrestat, in patients with symptomatic diabetic neuropathy. Diabetologia. 1990;33:433–436.

    Article  Google Scholar 

  39. Dyck PJ, Sherman WR, Hallcher LM, et al. Human diabetic endoneurial sorbitol, fructose, and myoinositol related to sural nerve morphometry. Ann Neurol. 1980;8:590–596.

    Article  PubMed  CAS  Google Scholar 

  40. Yamagishi S, Masuta N, Okamoto K, Yagihashi S. Alterations of protein kinase C activity in the peripheral nerve of STZ-induced diabetic mice overexpressing human aldose reductase (abstract). Diabetes. 2001;50:A190.

    Article  Google Scholar 

  41. Yamagishi S, Uehara K, Otsuki S, Yagihashi S. Differential influence of increased polyol pathway on protein kinase C expressions between endoneurial and epineurial tissues in diabetic mice. J Neurochem. 2003;87:497–507.

    Article  PubMed  CAS  Google Scholar 

  42. Newrick PG, Wilson AJ, Jakubowski J, et al. Sural nerve oxygen tension in diabetes. Br Med J. 1986;293:1053.

    Article  CAS  Google Scholar 

  43. Tuck RR, Schmelzer JD, Low PA. Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy. Brain. 1984;107:935.

    Article  PubMed  Google Scholar 

  44. Low PA, Tuck RR, Dyck PJ, et al. Prevention of some electrophysiologic and biochemical abnormalities with oxygen supplementation in experimental diabetic neuropathy. Proc Natl Acad Sci USA. 1984;81:6894.

    Article  PubMed  CAS  Google Scholar 

  45. Low PA, Schmelzer JD, Ward KK, et al. Effect of hyperbaric oxygenation on normal and chronic streptozotocin diabetic peripheral nerves. Exp Neurol. 1988;99:201.

    Article  PubMed  CAS  Google Scholar 

  46. Theriault M, Dort J, Sutherland G, Zochodne DW. Local human sural nerve blood flow in diabetic and other polyneuropathies. Brain. 1997;120:1131–1138.

    Article  PubMed  Google Scholar 

  47. Zochodne DW. Diabetes mellitus and the peripheral nervous system: manifestations and mechanisms. Muscle Nerve. 2007;36:144–166.

    Article  PubMed  CAS  Google Scholar 

  48. Zochodne DW, Ho LT. The influence of indomethacin and guanethidine on experimental streptozocin diabetic neuropathy. Can J Neurol Sci. 1992;19:433–441.

    PubMed  CAS  Google Scholar 

  49. Zochodne DW, Nguyen C. Increased peripheral nerve microvessels in early experimental diabetic neuropathy: quantitative studies of nerve and dorsal root ganglia. J Neurol Sci. 1999;166:40–46.

    Article  PubMed  CAS  Google Scholar 

  50. Halestrap AP. Calcium, mitochondria, and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–237.

    Article  PubMed  CAS  Google Scholar 

  51. Li X-G, Zochodne DW. Microvacuolar neuronopathy is a post-mortem artifact of sensory neurons. J Neurocytol. 2003;32:393–398.

    Article  PubMed  CAS  Google Scholar 

  52. Watkins PJ, Gayle C, Alsanjari N, et al. Severe sensory autonomic neuropathy and endocrinopathy in insulin dependent diabetes. Q J Med. 1999;88:795–804.

    Google Scholar 

  53. Kelkar P, Masood M, Parry GJ. Distinctive pathologic findings in proximal diabetic neuropathy (diabetic amyotrophy). Neurology. 2000;55:83–88.

    PubMed  CAS  Google Scholar 

  54. Yagihashi S, Kamijo M, Ido Y, et al. Effects of long-term aldose reductase inhibition on development of experimental diabetic neuropathy: ultrastructural and morphometric studies of sural nerve in streptozocin-induced diabetic rats. Diabetes. 1990;39:690–697.

    Article  PubMed  CAS  Google Scholar 

  55. Xu QG, Li X-Q, Kotecha SA, et al. Insulin as an in vivo growth factor. Exp Neurol. 2004;188:43–51.

    Article  PubMed  CAS  Google Scholar 

  56. Toth C, Brussee V, Zochodne DW. Remote neurotrophic support of epidermal nerve fibers in experimental diabetes. Diabetologia. 2006;49:1081–1088.

    Article  PubMed  CAS  Google Scholar 

  57. Kimura J. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. 3rd Ed. New York: Oxford University Press; 2001.

    Google Scholar 

  58. Mehra S, Tavakoli M, Kallinikos PA, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care. 2007;30:2608–2612.

    Article  PubMed  Google Scholar 

  59. Navarro X, Sutherland DE, Kennedy WR. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol. 1997;42:727–736.

    Article  PubMed  CAS  Google Scholar 

  60. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–1299.

    Article  PubMed  Google Scholar 

  61. Ziegler D, Ametov A, Barinov A, et al. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy. Diabetes Care. 2006;29:2365–2370.

    Article  PubMed  CAS  Google Scholar 

  62. Bril V, Buchanan RA. Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care. 2006;29:68–72.

    Article  PubMed  CAS  Google Scholar 

  63. Vinik AI, Bril V, Kempler P, et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther. 2005;27:1164–1180.

    Article  PubMed  CAS  Google Scholar 

  64. Keen H, Payan J, Allawi J, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care. 1993;16:8–15.

    Article  PubMed  CAS  Google Scholar 

  65. Ziegler D. Treatment of diabetic polyneuropathy. Ann NY Acad Sci. 2006;1084:250–266.

    Article  PubMed  CAS  Google Scholar 

  66. Vinik A. Clinical review: use of antiepileptic drugs in the treatment of chronic painful diabetic neuropathy. J Clin Endocrinol Metab. 2005;90:4936–4945.

    Article  PubMed  CAS  Google Scholar 

  67. McKeage K. Treatment options for the management of diabetic painful neuropathy: best current evidence. Curr Opin Neurol. 2007;20(5):553–557.

    Article  PubMed  CAS  Google Scholar 

  68. Gimbel JS, Richards P, Portenoy RK. Controlled-release oxycodone for pain in diabetic neuropathy: a randomized controlled trial. Neurology. 2003;60:927–934.

    PubMed  CAS  Google Scholar 

  69. Gilron I, Bailey JM, Tu D, et al. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med. 2005;352:1324–1334.

    Article  PubMed  CAS  Google Scholar 

  70. Bosi E, Conti M, Vermigli C, et al. Effectiveness of frequency-modulated electromagnetic neural stimulation in the treatment of painful diabetic neuropathy. Diabetologia. 2005;48:817–823.

    Article  PubMed  CAS  Google Scholar 

  71. Clark CM, Lee DA. Prevention and treatment of complications of diabetes mellitus. N Engl J Med. 1995;332:1210–1217.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chin, R.L., Rubin, M. (2010). Diabetic Neuropathy. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics