Skip to main content
Log in

Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian Basin)

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The Nógrád-Gömör Volcanic Field (NGVF) is one of the five mantle xenolith bearing alkaline basalt locations in the Carpathian Pannonian Region. This allows us to constrain the structure and properties (e.g. composition, current deformation state, seismic anisotropy, electrical conductivity) of the upper mantle, including the lithosphere-asthenosphere boundary (LAB) using not only geophysical, but also petrologic and geochemical methods. For this pilot study, eight upper mantle xenoliths have been chosen from Bárna-Nagykő, the southernmost location of the NGVF. The aim of this study is estimating the average seismic properties of the underlying mantle. Based on these estimations, the thickness of the anisotropic layer causing the observed average SKS delay time in the area was modelled considering five lineation and foliation end-member orientations. We conclude that a 142–333 km thick layer is required to explain the observed SKS anisotropy, assuming seismic properties calculated by averaging the properties of the eight xenoliths. It is larger than the thickness of the lithospheric mantle. Therefore, the majority of the delay time accumulates in the sublithospheric mantle. However, it is still in question whether a single anisotropic layer, represented by the studied xenoliths, is responsible for the observed SKS anisotropy, as it is assumed beneath the Bakony–Balaton Highland Volcanic Field (Kovács et al. 2012), or the sublithospheric mantle has different layers. In addition, the depths of the Moho and the LAB (\(25\,\pm \,5, 65\,\pm \,10\,\hbox {km}\), respectively) were estimated based on S receiver function analyses of data from three nearby permanent seismological stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramson EH, Brown JM, Slutsky LJ, Zaug J (1997) The elastic constants of San Carlos olivine to 17 GPa. J Geophys Res 102:12253–12263. doi:10.1029/97JB00682

    Article  Google Scholar 

  • Balogh K, Árva-Sós E, Pécskay Z (1986) K/Ar dating of post Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petrogr Szeged 28:75–93

    Google Scholar 

  • Baptiste V, Tommasi A (2014) Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth 5:45–63. doi:10.5194/se-5-45-2014

    Article  Google Scholar 

  • Barruol G, Mainprice D (1993) A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves. Phys Earth Planet Inter 78:281–300. doi:10.1016/0031-9201(93)90161-2

    Article  Google Scholar 

  • Bascou J, Doucet LS, Saumet S, Ionov DA, Ashchepkov IV, Golovin AV (2011) Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth Planet Sci Lett 304:71–84. doi:10.1016/j.epsl.2011.01.016

    Article  Google Scholar 

  • Ben-Ismail W, Barruol G, Mainprice D (2001) The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules. Geophys Res Lett 28:2497–2500. doi:10.1029/2000GL012419

    Article  Google Scholar 

  • Bunge HJ (1982) Texture analysis in materials science: mathematical methods. Butterworths, London

    Google Scholar 

  • Dando BDE, Stuart GW, Houseman GA, Hegedüs E, Brückl E, Radovanovic S (2011) Teleseismic tomography of the mantle in the Carpathian-Pannonian region of central Europe. Geophys J Int 186:11–31. doi:10.1111/j.1365-246X.2011.04998.x

  • Dobosi G, Jenner G, Embey-Isztin A, Downes H (2010) Cryptic metasomatism in clino- and orthopyroxene in the upper mantle beneath the Pannonian region. In: Coltorti M (ed) Petrological evolution of the European lithospheric mantle: from Archaean to present day, vol special publication 337. Geological Society, London

    Google Scholar 

  • Dricker I, Vinnik L, Roecker S, Makeyeva L (1999) Upper-mantle flow in eastern Europe. Geophys Res Lett 26:1219–1222. doi:10.1029/1999GL900204

    Article  Google Scholar 

  • Embey-Isztin A et al (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343

    Article  Google Scholar 

  • Falus G, Szabo C, Kovacs I, Zajacz Z, Halter W (2007) Symplectite in spinel lherzolite xenoliths from the Little Hungarian Plain, Western Hungary: a key for understanding the complex history of the upper mantle of the Pannonian Basin. Lithos 94:230–247. doi:10.1016/j.lithos.2006.06.017

    Article  Google Scholar 

  • Falus G, Tommasi A, Ingrin J, Szabó C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64. doi:10.1016/j.epsl.2008.04.035

    Article  Google Scholar 

  • Farra V, Vinnik L (2000) Upper mantle stratification by P and S receiver functions. Geophys J Int 141:699–712. doi:10.1046/j.1365-246x.2000.00118.x

    Article  Google Scholar 

  • Fullea J, Lebedev S, Agius MR, Jones AG, Afonso JC (2012) Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation. Geochem Geophys Geosyst 13:Q0AK09. doi:10.1029/2012GC004138

    Article  Google Scholar 

  • Fullea J, Muller MR, Jones AG (2011) Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: Application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. J Geophys Res 116:B10202. doi:10.1029/2011JB008544

    Article  Google Scholar 

  • Geissler WH, Sodoudi F, Kind R (2010) Thickness of the central and eastern European lithosphere as seen by S receiver functions. Geophys J Int 181:604–634. doi:10.1111/j.1365-246X.2010.04548.x

    Google Scholar 

  • Grad M et al (2006) Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL05. J Geophys Res 111:B03301. doi:10.1029/2005JB003647

    Google Scholar 

  • Harangi S (2001) Neogene to quaternary volcanism of the Carpathian-Pannonian Region - a review. Acta Geol Hung 44:223–258

    Google Scholar 

  • Hidas K, Falus G, Szabó C, Szabó PJ, Kovács I, Földes T (2007) Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony–Balaton Highland Volcanic Field (Western Hungary). J Geodyn 43:484–503

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357. doi:10.1016/0040-1951(93)90126-5

    Article  Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee DG, Stephenson R (eds) European lithosphere dynamics, vol memoirs 32. The Geological Society of London, London, pp 191–206

    Google Scholar 

  • Hrubcová P, Środa P, Grad M, Geissler WH, Guterch A, Vozár J, Hegedűs E (2010) From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophys J Int 183:611–633. doi:10.1111/j.1365-246X.2010.04766.x

    Article  Google Scholar 

  • Hurai V, Danišík M, Huraiová M, Paquette J-L, Ádám A (2013) Combined U/Pb and (U-Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Miner Petrol 166:1235–1251. doi:10.1007/s00410-013-0922-1

    Article  Google Scholar 

  • Isaak DG, Ohno I, Lee PC (2006) The elastic constants of monoclinic single-crystal chrome-diopside to 1,300 K. Phys Chem Miner 32:691–699. doi:10.1007/s00269-005-0047-9

    Article  Google Scholar 

  • Ivan M, Popa M, Ghica D (2008) SKS splitting observed at Romanian broad-band seismic network. Tectonophysics 462:89–98. doi:10.1016/j.tecto.2007.12.015

    Article  Google Scholar 

  • Ivan M, Tóth L, Kiszely M (2002) SKS Splitting observed at the Hungarian station PSZ - Geofon Network. J Balk Geophys Soc 5:71–76

    Google Scholar 

  • Jackson JM, Sinogeikin SV, Bass JD (2007) Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure. Phys Earth Planet Inter 161:1–12. doi:10.1016/j.pepi.2006.11.002

    Article  Google Scholar 

  • Jones AG, Fishwick S, Evans RL, Muller MR, Fullea J (2013) Velocity-conductivity relations for cratonic lithosphere and their application: example of Southern Africa. Geochem Geophys Geosyst 14:806–827. doi:10.1002/ggge.20075

    Article  Google Scholar 

  • Jones AG, Plomerova J, Korja T, Sodoudi F, Spakman W (2010) Europe from the bottom up: a statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos 120:14–29. doi:10.1016/j.lithos.2010.07.013

    Article  Google Scholar 

  • Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22. doi:10.1016/j.tecto.2006.02.011

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465. doi:10.1111/j.1365-246X.1991.tb06724.x

    Article  Google Scholar 

  • Konečny P, Konečny V, Lexa J, Huraiová M (1995) Mantle xenoliths in alkali basalts of Southern Slovakia. Acta Vulcanol 7:241–247

    Google Scholar 

  • Kovács I et al (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian-Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179

    Article  Google Scholar 

  • Kovács I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region (N-Hungary/S-Slovakia). Miner Petrol 85:269–290

    Article  Google Scholar 

  • Kovács I, Zajacz Z, Szabó C (2004) Type-II xenoliths and related metasomatism from the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian region (northern Hungary-southern Slovakia). Tectonophysics 393:139–161. doi:10.1016/j.tecto.2004.07.032

    Article  Google Scholar 

  • Kumar P, Yuan X, Kind R, Ni J (2006) Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J Geophys Res 111:B06308. doi:10.1029/2005JB003930

    Google Scholar 

  • Kustowski B, Ekström G, Dziewoński AM (2008) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113:B06306. doi:10.1029/2007JB005169

    Google Scholar 

  • Liptai N (2013) Geokémiai jellemvonások és fizikai állapot tanulmányozása nógrád-gömöri felsőköpeny xenolitokon. MSc Thesis, Eötvös University.

  • Liptai N, Jung H, Park M, Szabó C (2013) Olivine orientation study on upper mantle xenoliths from Bárna-Nagykő, Nógrád-Gömör Volcanic Field (Northern Pannonian Basin, Hungary). Földtani Közlöny 143:371–382 (in Hungarian, with English abstract).

  • Liptai N, Patkó L, Kovács I, Pintér Z, Hidas K, Tommasi A, Jeffries T, Zajacz Z, Falus G, Szabó C. The upper mantle beneath the Nógrád-Gömör Volcanic Field (Northern Hungary-Southern Slovakia) - an integrated study on spinel lherzolite xenoliths. J Petrol (submitted)

  • Long MD, Becker TW (2010) Mantle dynamics and seismic anisotropy. Earth Planet Sci Lett 297:341–354. doi:10.1016/j.epsl.2010.06.036

    Article  Google Scholar 

  • Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393. doi:10.1016/0098-3004(90)90072-2

    Article  Google Scholar 

  • Michibayashi K, Abe N, Okamato A, Satsukawa T, Michikura K (2006) Seismic anisotropy in the uppermost mantle, back-arc region of the northest Japan arc: petrophyisical analyses of Ichinomegata peridotite xenoliths. Geophys Res Lett 33:L10312

    Article  Google Scholar 

  • Mohammadi N, Sodoudi F, Mohammadi E, Sadidkhouy A (2013) New constraints on lithospheric thickness of the Iranian plateau using converted waves. J Seismol 17:883–895

    Article  Google Scholar 

  • Pécskay Z et al (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530

    Google Scholar 

  • Pera E, Mainprice D, Burlini L (2003) Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines, Central Italy). Tectonophysics 370:11–30. doi:10.1016/S0040-1951(03)00175-6

    Article  Google Scholar 

  • Plomerová J, Babuška V (2010) Long memory of mantle lithosphere fabric – European LAB constrained from seismic anisotropy. Lithos 120:131–143. doi:10.1016/j.lithos.2010.01.008

    Article  Google Scholar 

  • Stuart GW et al. (2007) Understanding extension within a convergent orogen: Initial results from the Carpathian Basins Seismic Project. Eos Trans AGU 88:Fall Meet. Suppl., Abstract S41A–0235

  • Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics 393:119–137

    Article  Google Scholar 

  • Szabo C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophysics 208:243–256

    Article  Google Scholar 

  • Szabó C, Taylor LA (1994) Mantle petrology and geochemistry beneath the Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region. Int Geol Rev 36:328–358

    Article  Google Scholar 

  • Tomek Č (1993) Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics 226:417–431. doi:10.1016/0040-1951(93)90130-C

    Article  Google Scholar 

  • Wenk HR (2004) The Texture of rocks in the earth’s deep interior: part II. Application of texturing to the deep earth. In: Buschow KHJ, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick V (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford, pp 1–11. doi:10.1016/B0-08-043152-6/01929-X

    Google Scholar 

  • Yuan X, Kind R, Li X, Wang R (2006) The S receiver functions: synthetics and data example. Geophys J Int 165:555–564

    Article  Google Scholar 

  • Zajacz Z, Kovacs I, Szabo C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine-clinopyroxenite xenoliths, northern Hungary. J Petrol 48:853–883. doi:10.1093/petrology/egm004

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank V. Baptiste for helpful discussion. We are grateful for the thorough review and constructive comments of K. Hidas and an anonymous reviewer. This research was carried out in the framework of the cooperation agreement (TTK/6109/1/2014 and Sz/156/2014) between the Lithosphere Fluid Research Lab at Department of Petrology and Geochemistry of Eötvös University and the Geodetic and Geophysical Institute of the MTA Research Centre for Astronomy and Earth Sciences. This study was partially supported by the TAMOP-4.2.2.C–11/1/KONV-2012-0015 (Earth-system) project sponsored by the EU and European Social Foundation. IK was supported by the Bolyai Postdoctoral Fellowship Program and a Marie Curie International Reintegration Grant (NAMS-230937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Klébesz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4874 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klébesz, R., Gráczer, Z., Szanyi, G. et al. Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian Basin). Acta Geod Geophys 50, 133–149 (2015). https://doi.org/10.1007/s40328-014-0094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-014-0094-0

Keywords

Navigation