Skip to main content
Log in

Geophysical evidences for large-scale mullion-type structures at the mantle–crust interface in southern Madagascar: implications for Neoproterozoic orogeny

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study uses gravimetric data integrated with recent seismic data published on south Madagascar to investigate geometry of crust–mantle interface. The regional tectonic framework of Madagascar is characterised by anastomosing network of up to 15-km-wide, 600-km-long and north-oriented high-strain zones, which originated during Neoproterozoic convergence. The studied Bouguer anomalies obtained from the International Gravimetric Bureau were high-pass filtered to emphasise short-wavelength gravimetric variations (shorter than 200 km). The Pan-African high-strain zones coincide with the positive gravimetric anomalies suggesting a link with deep seated high-density material. Considering the present-day thickness of the crust (35 km) and its seismic velocity record, the gravimetric anomalies can be visualised as narrow vertical tabular bodies located at the base of the Moho. Modelling further confirmed that such narrow vertical bodies could be stable over geologic time scale since these structures are relatively small (10 to 30 km wide). The vertical tabular bodies possibly reflect material transfer such as vertical motion of sub-crustal weak and possibly partially molten mantle along vertical deformation zones. It is proposed that these structures were initiated by folding of weak mantle–crust interface characterised by low-viscosity contrast between weak mantle and stronger granulitized lower crust during bulk pure shear-dominated horizontal shortening. It is proposed that the cuspate-lobate “mullion-type” geometry mimics rheological inversions of mafic and felsic rocks and shape of folds of variable scale observed in southern Madagascar. The formation of such mega-mullion structures is possibly an expression of “crème brulée” rheological model, where the deformation of the lithosphere is governed by stronger granulitic lower crust and weaker partially molten and/or hydrated mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Randrianasolo (2009), Roig et al. (2012) and Martelat et al. (2012). Red and black stars are taken on PT evaluation or on specific mineral parageneses (Nicollet 1988, 1990a, b; Nirihaja et al. 2010; Jöns and Schenk 2011; Martelat et al. 2012; Horton et al. 2016; Holder et al. 2018)

Fig. 2
Fig. 3

Modified from Martelat et al. (2000, 2014), Randrianasolo (2009), Rakotovao et al. (2014) and Boger et al. (2008a, 2015)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andriampenomanana F, Nyblade AA, Wysession ME, Durrheim RJ, Tilmann F, Julià J, Pratt MJ, Rambolamanana G, Ghassan A, Shore PJ, Rakotondraibe T (2017) The structure of the crust and uppermost mantle beneath Madagascar. Geophys J Int 210:1525–1544. https://doi.org/10.1093/gji/ggx243

    Article  Google Scholar 

  • Ackermand D, Windley BF, Razafiniparany A (1989) The Precambrian mobile belt of southern Madagascar. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geological Society of London Special Publication 43, pp 293–296

  • Ackermand D, Windley BF, Razafiniparany A (1991) Kornerupine breakdown reactions in paragneisses from southern Madagascar. Mineral Mag 55:71–80

    Article  Google Scholar 

  • Aitken ARA, Betts PG, Weinberg RF, Gray D (2009) Constrained potential field modeling of the crustal architecture of the Musgrave Province in central Australia: evidence for lithospheric strengthening due to crust–mantle boundary uplift. J Geophys Res 114:1–23. https://doi.org/10.1029/2008JB006194

    Article  Google Scholar 

  • Bazot G (1975) Les formations métamorphiques précambriennes du Sud-Est de Madagascar. Bull BRGM 6:573–590

    Google Scholar 

  • Baratoux L, Lexa O, Cosgrove JW, Schulmann K (2005) The quantitative link between fold geometry, mineral fabric and mechanical anisotropy: as exemplified by the deformation of amphibolites across a regional metamorphic gradient. J Struct Geol 27:707–730. https://doi.org/10.1016/j.jsg.2005.01.001

    Article  Google Scholar 

  • Bardintzeff JM, Liégeois JP, Bonin B, Bellon H, Rasamimanana G (2010) Madagascar volcanic provinces linked to the Gondwana break-up: geochemical and isotopic evidences for contrasting mantle sources. Gondwana Res 18:295–314. https://doi.org/10.1016/j.gr.2009.11.010

    Article  Google Scholar 

  • Besairie H (1972) Géologie de Madagascar I. Les terrains sédimentaires Ann Géol Madag Tananarive 35

  • Bertil D, Regnoult J-M (1998) Seismotectonics of Madagascar. Tectonophysics 294:57–74. https://doi.org/10.1016/S0040-1951(98)00088-2

    Article  Google Scholar 

  • Boger SD, Miller JML (2004) Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth Planet Sci Lett 219:35–48. https://doi.org/10.1016/S0012-821X(03)00692-7

    Article  Google Scholar 

  • Boger SD, Ferreira CAM, Hirdes W, Schulte B, Jennet FT, Dallwig R (2008a) Carte Géologique de Madagascar 1:500 000, Feuilles N◦11 – Ampanihy, 12 – Tôlanaro Ministère de l’Energie et des Mines Projet de Gouvernance des Ressources Minérales Antananarivo

  • Boger SD, Ferreira CAM, Hirdes W, Schulte B, Jennet T, Dallwig R (2008b) Carte Géologique de Madagascar 1:500 000, Feuille N◦10 – Fianarantsoa. Ministère de l’Energie et des Mines, Projet de Gouvernance des Ressources Minérales Antananarivo

  • Boger SD, Hirdes W, Ferreira CAM, Schulte B, Jenett T, Fanning CM (2014) From passive margin to volcano–sedimentary forearc: the Tonian to Cryogenian evolution of the Anosyen Domain of southeastern Madagascar. Precambrian Res 247:159–186. https://doi.org/10.1016/j.precamres.2014.04.004

    Article  Google Scholar 

  • Boger SD, Hirdes W, Ferreira CAM, Jenett T, Dallwig R, Fanning CM (2015) The 580–520 Ma Gondwana suture of Madagascar and its continuation into Antarctica and Africa. Gondwana Res 28:1048–1060. https://doi.org/10.1016/j.gr.2014.08.017

    Article  Google Scholar 

  • Boger SD, Maas R, Pastuhov M, Macey PH, Hirdes W, Schulte B, Fanning CM, Ferreira CAM, Jenett T, Dallwig R (2019) The tectonic domains of southern and western Madagascar. Precambrian Res 327:144–175. https://doi.org/10.1016/j.precamres.2019.03.005

    Article  Google Scholar 

  • Boulanger J (1952) Ejeda-Gogogogo. Madagascar service géologique échelle 1/100 000 F60_G60

  • Boulanger J, Pavlosky R (1953) Ianapera. Madagascar service géologique échelle 1/100 000 H59

  • Boulanger J (1954) Contribution à l’étude du socle malgache : étude géologique des formations cristallines de la région du Vohibory (Madgascar). Université Nancy

  • Boulanger J (1957) Système volcanique fissural du pays Mahafaly (SW de Madagascar). Bull Soc Géol Fr 6 VII:529–537

    Article  Google Scholar 

  • Boulvais P, Fourcade S, Moine B, Gruau G, Cuney M (2000) Rare-earth elements distribution in granulite-facies marbles: a witness of fluid–rock interaction. Lithos 53:117–126. https://doi.org/10.1016/S0024-4937(00)00013-X

    Article  Google Scholar 

  • Burov EB (2011) Rheology and strength of the lithosphere. Mar Pet Geol 28:1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008

    Article  Google Scholar 

  • Cagnard F, Brun J, Gapais D (2006) Modes of thickening of analogue weak lithospheres. Tectonophysics 421:145–160

    Article  Google Scholar 

  • Coffin MF, Rabinowitz PD (1988) Evolution of the conjugate East African-Madagascan margins and the western Somali Basin. Geol Soc Am Spec Pap 276:1–78

    Google Scholar 

  • Coward MP, Ries AC (1986) Collision tectonics. Geological Society of London Special Publication, No. 19

  • de Wit MJ, Bowring SA, Ashwal LD, Randrianasolo LG, Morel VPI, Rambeloson RA (2001) Age and tectonic evolution of Neoproterozoic ductile shear zones in southwestern Madagascar, with implications for Gondwana studies. Tectonics 20:1–45

    Article  Google Scholar 

  • Dewey JF, Bird JM (1970) Mountain belts and the new global tectonics. J Geophys Res 75:2625–2647

    Article  Google Scholar 

  • Dreiling J, Tilmann F, Yuan X, Giese J, Rindraharisaona EJ, Rümpker G, Wysession ME (2018) Crustal radial anisotropy and linkage to geodynamic processes: a study based on seismic ambient noise in southern Madagascar. J Geophys 123:5130–5146. https://doi.org/10.1029/2017JB015273

    Article  Google Scholar 

  • Emmel B, Jöns N, Kröner A, Jacobs J, Wartho J-A, Schenk V, Razakamanana T, Austegard A (2008) From closure of the Mozambique Ocean to Gondwana Breakup: new evidence from geochronological data of the Vohibory Terrane, Southwest Madagascar. J Geol 116:21–38

    Article  Google Scholar 

  • England P, McKenzie D (1982) A thin viscous sheet model for continental deformation. Geophys J R Astron Soc 70:295–321

    Article  Google Scholar 

  • Fourno JE, Roussel J (1994) Imaging of the Moho depth in Madagascar through the inversion of gravity data: geodynamic implications. Terra Nova 6:512–519

    Article  Google Scholar 

  • Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebread W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East Africa region: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106

    Article  Google Scholar 

  • Geiger M, Clark DN, Mette W (2004) Reappraisal of the timing of the breakup of Gondwana based on sedimentological and seismic evidence from the Morondava Basin, Madagascar. J Afr Earth Sci 38:363–381. https://doi.org/10.1016/j.jafrearsci.2004.02.003

    Article  Google Scholar 

  • Giese J, Berger A, Schreurs G, Gnos E (2011) The timing of the tectono-metamorphic evolution at the Neoproterozoic-Phanerozoic boundary in central southern Madagascar. Precambrian Res 185:131–148. https://doi.org/10.1016/j.precamres.2011.01.002

    Article  Google Scholar 

  • Giese J, Schreurs G, Berger A, Herwegh M (2017) Kinematics and significance of a poly-deformed crustal-scale shear zone in central to south-eastern Madagascar: the Itremo-Ikalamavony thrust. Int J Earth Sci 106:2091–2108. https://doi.org/10.1007/s00531-016-1415-z

    Article  Google Scholar 

  • Handy MR (1989) Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grain size, and time. Tectonophysics 163:119–152. https://doi.org/10.1016/0040-1951(89)90122-4

    Article  Google Scholar 

  • Hanmer S (2000) Matrix mosaics, brittle deformation, and elongate porphyroclasts: granulite facies microstructures in the Striding-Athabasca mylonite zone, western Canada. J Struct Geol 22:947–967. https://doi.org/10.1016/S0191-8141(00)00009-2

    Article  Google Scholar 

  • Holder R, Hacker B, Horton F, Rakotondrazafy A (2018) Ultrahigh-temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long-lived high-temperature orogeny. J Metamorph Geol. https://doi.org/10.1111/jmg.12316

    Article  Google Scholar 

  • Horton F, Hacker B, Kylander-Clark A, Holder R, Jöns N (2016) Focused radiogenic heating of middle crust caused ultrahigh temperatures in southern Madagascar. Tectonics 35:293–314. https://doi.org/10.1002/2015TC004040

    Article  Google Scholar 

  • Jackson J (2002) Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today. https://doi.org/10.1130/1052-5173(2006)016%3c4:tltSOc%3e2.0.cO;2

    Article  Google Scholar 

  • Jöns N, Schenk V (2008) Relicts of the Mozambique Ocean in the central East African Orogen: evidence from the Vohibory block of the southern Madagascar. J Metamorph Geol 26:17–28

    Google Scholar 

  • Jöns N, Schenk V (2011) The ultra-high-temperature granulites of southern Madagascar in a polymetamorphic context: implications for the amalgamation of the Gondwana supercontinent. Eur J Mineral 23:127–156

    Article  Google Scholar 

  • Korsch RJ, Goleby BR, Leven JH, Drummond BJ (1998) Crustal architecture of central Australia based on deep crustal reflection profiling, in: Klemperer, S. L. and Mooney, W. D. (Eds.): deep seismic profiling of the continents: II. A global survey. Tectonophysics 288:57–69

    Article  Google Scholar 

  • Kusbach V, Ulrich S, Schulmann K (2012) Ductile deformation and rheology of sub-continental mantle in a hot collisional orogeny: example from the Bohemian Massif. J Geodyn 56–57:108–123. https://doi.org/10.1016/j.jog.2011.06.004

    Article  Google Scholar 

  • Lambeck K, Burgess G (1992) Deep crustal structure of the Musgrave Block, central Australia: results from teleseismic travel time anomalies. Aust J Earth Sci 39:1–19. https://doi.org/10.1080/08120099208727996

    Article  Google Scholar 

  • Lardeaux J-M, Martelat J-E, Nicollet C, Pili E, Rakotondrazafy R, Cardon H (1999) Metamorphism and tectonics in southern Madagascar: an overview. Gondwana Res 2:355–362. https://doi.org/10.1016/S1342-937X(05)70274-4

    Article  Google Scholar 

  • Lehmann J, Schulmann K, Lexa O, Závada P, Štípská P, Hasalová P, Belyanin G, Corsini M (2017) Detachment folding of partially molten crust in accretionary orogens: a new magma-enhanced vertical mass and heat transfer mechanism. Lithosphere 9:889–909. https://doi.org/10.1130/L670.1

    Article  Google Scholar 

  • Li P, Scott JM, Liu J, Xia QK (2018) Lateral H2O variation in the Zealandia lithospheric mantle controls orogeny width. Earth Planet Sci Lett 502:200–209. https://doi.org/10.1016/j.epsl.2018.09.004

    Article  Google Scholar 

  • Mahoney J, Nicollet C, Dupuy C (1991) Madagascar basalts: tracking oceanic and continental sources. Earth Planet Sci Lett 104:350–363. https://doi.org/10.1016/0012-821X(91)90215-4

    Article  Google Scholar 

  • Mahoney J, Saunders AD, Storey M, Randriamanantenasoa A (2008) Geochemistry of the volcan de l’Androy basalt-rhyolite complex, Madagascar Cretaceous igneous province. J Petrol 49:1069–1096. https://doi.org/10.1093/petrology/egn018

    Article  Google Scholar 

  • Maierová P, Lexa O, Schulmann K, Štípská P (2014) Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: a numerical model. Gondwana Res 25:509–521. https://doi.org/10.1016/j.gr.2012.08.020

    Article  Google Scholar 

  • Mariita NO, Keller GR (2007) An integrated geophysical study of the northern Kenya rift. J Afr Earth Sci 48:80–94

    Article  Google Scholar 

  • Martelat J-E, Nicollet C, Lardeaux J-M, Vidal G, Rakotondrazafy R (1997) Lithospheric tectonic structures developed under high-grade metamorphism in the southern part of Madagascar. Geodin Acta 10:94–114

    Article  Google Scholar 

  • Martelat J-E, Schulmann K, Lardeaux J-M, Nicollet C (1999) Granulite microfabric and deformation mechanisms in southern Madagascar. J Struct Geol 21:671–687

    Article  Google Scholar 

  • Martelat J-E, Lardeaux J-M, Nicollet C, Rakotondrazafy R (2000) Strain pattern and history of the southern Madagascar. Precambrian Res 102:1–20

    Article  Google Scholar 

  • Martelat J-E, Malamoud K, Cordier P, Randrianasolo B, Schulmann K, Lardeaux J-M (2012) Garnet crystal plasticity in the continental crust, new example from south Madagascar. J Metamorph Geol 30:435–452

    Article  Google Scholar 

  • Martelat J-E, Randrianasolo B, Schulmann K, Lardeaux J-M, Devidal J-L (2014) Airborne magnetic data compared to petrology of crustal scale shear zones from southern Madagascar: a tool for deciphering magma and fluid transfer in orogenic crust. J Afr Earth Sci 94:94–85. https://doi.org/10.1016/j.jafrearsci.2013.07.003

    Article  Google Scholar 

  • Means WD (1990) One-dimensional kinematics of stretching faults. J Struct Geol 12:267–272. https://doi.org/10.1016/0191-8141(90)90010-V

    Article  Google Scholar 

  • Molnar P (1989) A review of geophysical constraints on the deep-structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philos Trans R Soc A 326:33–88. https://doi.org/10.1098/rsta.1988.0080

    Article  Google Scholar 

  • Nédélec A, Guillaume D, Cournede C, Duran C, Macouin M, Rakotondrazafy M, Giuliani G (2014) Incipient charnockitisation due to carbonic fluid transfer related to late Pan-African transcurrent tectonics in Madagascar; implications for mobility of Fe, Ti, REE and other elements. J Afr Earth Sci 94:86–99. https://doi.org/10.1016/j.jafrearsci.2013.07.005

    Article  Google Scholar 

  • Nicollet C (1984) Le volcanisme dans le Sud-Ouest de Madagascar. J Afr Earth Sci 2:383–388

    Google Scholar 

  • Nicollet C (1988) Métabasites granulitiques, anorthosites et roches associées de la croûte inférieure. Exemples pris à Madagascar et dans le massif Central Français. Argument en faveur d’un métamorphisme associé à l’extension lithosphérique. Unpublished Professorial Thesis, University Clermont Ferrand II. https://christian.nicollet.free.fr/page/Publications/TheseEtatNicollet1988.pdf. Accessed 28 Apr 2020

  • Nicollet C (1990a) Crustal evolution of the granulites of Madagascar. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer Academic, Dordrecht, pp 291–310

    Chapter  Google Scholar 

  • Nicollet C (1990b) Occurrences of grandidierite, serendibite and tourmaline near Ihosy, southern Madagascar. Mineral Mag 54:131–133

    Article  Google Scholar 

  • Nirihaja O, Rakotonandrasana T, Makoto AMR, Rambeloson RA (2010) Widespread occurrences of Högbomite-2N2S in UHT metapelites from the Betroka Belt, Southern Madagascar: implications on melt or fluid activity during regional metamorphism. J Petrol 52:869–895. https://doi.org/10.1093/petrology/egq004

    Article  Google Scholar 

  • Nitescu B, Cruden AR, Bailey RC (2003) Topography of the crust–mantle interface under the Western Superior craton from gravity data. Can J Earth Sci 40:1307–1320. https://doi.org/10.1139/e03-042

    Article  Google Scholar 

  • Paquette J-L, Nédélec A, Moine B, Rakotondrazafy M (1994) U-Pb, single zircon Pb-evaporation, and Sm–Nd isotopic study of a granulite domain in SE Madagascar. J Geol 102:523–538

    Article  Google Scholar 

  • Pili E, Sheppard SMF, Lardeaux J-M, Martelat J-E, Nicollet C (1997a) Fluid flow versus scale of shear zones in the lower continental crust and the granulite paradox. Geology 25:15–18

    Article  Google Scholar 

  • Pili E, Ricard Y, Lardeaux J-M, Sheppard SMF (1997b) Lithospheric shear zones and mantle–crust connections. Tectonophysics 280:15–29. https://doi.org/10.1016/S0040-1951(97)00142-X

    Article  Google Scholar 

  • Pili E, Sheppard SMF, Lardeaux J-M (1999) Fluid–rock interaction in the granulites of Madagascar and lithospheric-scale transfer of fluids. Gondwana Res 2:341–350

    Article  Google Scholar 

  • Piqué A, Laville E, Chotin P, Chorowicz J, Rakotondraompiana S, Thouin C (1999) L’extension à Madagascar du Néogène à l’actuel: arguments structuraux et géophysiques. J Afr Earth Sci 28:975–983

    Article  Google Scholar 

  • Piqué A (2002) L’évolution géologique de Madagascar et la dislocation du Gondwana: une introduction. J Afr Earth Sci 28:919–930. https://doi.org/10.1016/s0899-5362(99)00069-x

    Article  Google Scholar 

  • Pratt MJ, Wysession ME, Aleqabi G, Wiens DA, Nyblade AA, Shore P, Rindraharisaon E (2017) Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography. Earth Planet Sci Lett 458:405–417. https://doi.org/10.1016/j.epsl.2016.10.041

    Article  Google Scholar 

  • Radhakrishna M, Kurian PJ, Nambiar CG, Murty BVS (2003) Nature of the crust below the Southern Granulite Terrain (SGT) of Peninsular India across the Bavali Shear Zone based on analysis of gravity data. Precambrian Res 124:21–40. https://doi.org/10.1016/S0301-9268(03)00047-0

    Article  Google Scholar 

  • Rakotondraompiana SA, Albouy Y, Piqué A (2002) Modèle de lithosphère pour l’île de Madagascar (océan Indien occidental): nouvelle interprétation des données gravimétriques. J Afr Earth Sci 28:961–973. https://doi.org/10.1016/s0899-5362(99)00072-x

    Article  Google Scholar 

  • Rakotovao AP, Jessell M, Salvi S, Béziat D, Montel J-M, Rakotondrazafy M (2014) The Ianapera-Ampanihy Suture, SW Madagascar: a major tectonic boundary on the eastern margin of the Mozambique belt. J Afr Earth Sci 94:31–44. https://doi.org/10.1016/j.jafrearsci.2013.12.009

    Article  Google Scholar 

  • Ramirez C, Nyblade A, Wysession ME, Pratt M, Andriampenomanana F, Rakotondraibe T (2018) Complex seismic anisotropy in Madagascar revealed by shear wave splitting measurements. Geophys J Int 215:1718–1727. https://doi.org/10.1093/gji/ggy367

    Article  Google Scholar 

  • Ranalli G (1995) Rheology of the earth, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Ranalli G (1997) Rheology of the lithosphere in space and time. In: Burg J-P, Ford M (eds) Orogen through time. Geological Society of London Special Publication, 121, pp 19–37. https://doi.org/10.1144/GSL.SP.1997.121.01.02

  • Randrianasolo B (2009) Nouvelles méthodes de cartographie sur le socle protérozoïque du Sud de Madagascar. Nature et géométrie de la croute continentale d’un domaine orogénique en convergence, implications économiques. Université Joseph Fourier, Grenoble. Mém Géologie Alpine 53. https://tel.archives-ouvetes.fr/tel-00404948/fr/. Accessed 28 Apr 2020

  • Rasamimanana G, Bardintzeff J-M, Rasendrasoa J, Bellon H, Thouin C, Gioan P, Piqué A (1998) Les épisodes magmatiques du Sud-Ouest de Madagascar (bassin de Morondava), marqueurs des phénomènes de rifting crétacé et néogène. C R Geosci Paris 326:685–691

    Google Scholar 

  • Ratheesh-Kumar RT, Ishwar-Kumar C, Windley BF, Razakamanana T, Nair RR, Sajeev K (2015) India-Madagascar paleo-fit based on flexural isostasy of their rifted margins. Gondwana Res 28:581–600. https://doi.org/10.1016/j.gr.2014.06.008

    Article  Google Scholar 

  • Rechenmann J (1982) Gravimétrie de Madagascar. Interprétation et relations avec la géologie. ORSTOM 18

  • Reiss MC, Rümpker G, Tilmann F, Yuan X, Giese J, Rindraharisaona EJ (2016) Seismic anisotropy of the lithosphere and asthenosphere beneath southern Madagascar from teleseismic shear wave splitting analysis and waveform modeling. J Geophys Res 121:6627–6643. https://doi.org/10.1002/2016JB013020

    Article  Google Scholar 

  • Rindraharisaona EJ, Tilmann F, Yuan X, Rümpker G, Giese J, Rambolamanana G, Barruol G (2017) Crustal structure of southern Madagascar from receiver functions and ambient noise correlation: implications for crustal evolution. J Geophys Res 122:1179–1197. https://doi.org/10.1002/2016JB013565

    Article  Google Scholar 

  • Roig J-Y, Tucker RD, Peters SG, Delor C, Théveniaut H (2012) Carte géologique de la république de Madagascar à 1/1 000 000. Ministère des mines direction de la géologie. Programme de Gouvernance des Ressources Minérales

  • Rolin P (1991) Présence de décrochements précambriens dans le bouclier méridional de Madagascar: implications structurales et géodynamiques. C R Geosci Paris 312:625–629

    Google Scholar 

  • Le Roux V, Tommasi A, Vauchez A (2008) Feedback between melt percolation and deformation in an exhumed. Earth Planet Sci Lett 274:401–413. https://doi.org/10.1016/j.epsl.2008.07.053

    Article  Google Scholar 

  • Schreurs G, Giese J, Berger A, Gnos E (2010) A new perspective on the significance of the Ranotsara Shear Zone in Madagascar. Int J Earth Sci 99:1827–1847. https://doi.org/10.1007/s00531-009-0490-9

    Article  Google Scholar 

  • Scherba C, Montreuil J-F, Barrie CT (2018) Chapter 15. In: Geology and economics of the giant Molo graphite deposit. Southern Madagascar Society of Economic Geologists, Inc. SEG Special Publications, No. 21, pp 347–363

  • Schulmann K, Thompson AB, Lexa O, Jezek J (2003) Strain distribution and fabric development modeled in active and ancient transpressive zones. J Geophys Res. https://doi.org/10.1029/2001JB000632

    Article  Google Scholar 

  • Singh AP, Kumar N, Singh B (2006) Nature of the crust along Kuppam-Palani geotransect (South India) from gravity studies: implications for Precambrian continental collision and delamination. Gondwana Res 10:41–47. https://doi.org/10.1016/j.gr.2005.11.013

    Article  Google Scholar 

  • Smith WF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 3:293–305

    Article  Google Scholar 

  • Sokoutis D (1987) Finite strain effects in experimental mullions. J Struct Geol 9:233–242. https://doi.org/10.1016/0191-8141(87)90028-9

    Article  Google Scholar 

  • Sokoutis D, Burg JP, Bonini M, Corti G, Cloetingh S (2005) Lithospheric-scale structures from the perspective of analogue continental collision. Tectonophysics 406:1–15. https://doi.org/10.1016/j.tecto.2005.05.025

    Article  Google Scholar 

  • Soustelle V, Tommasi A, Demouchy S, Ionov D (2008) Deformation and fluid–rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha Volcano, Kamchatka. J Petrol 51:363–394. https://doi.org/10.1093/petrology/egp085

    Article  Google Scholar 

  • Soustelle V, Tommasi A, Demouchy S, Leander F (2013) Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea. Tectonophysics 608:330–345. https://doi.org/10.1016/j.tecto.2013.09.024

    Article  Google Scholar 

  • Talbot CJ, Sokoutis D (1992) The importance of incompetence. Geology 20:951–953

    Article  Google Scholar 

  • Tesha AL, Nyblade AA, Keller GR, Doser DI (1997) Rift localization in suture-thickened crust: evidence from Bouguer gravity anomalies in northeastern Tanzania, East Africa. Tectonophysics 278:315–328. https://doi.org/10.1016/S0040-1951(97)00110-8

    Article  Google Scholar 

  • Thompson AB, Schulmann K, Jezek J (1997a) Thermal evolution and exhumation in obliquely convergent (transpressive) orogens. Tectonophysics 280:171–184. https://doi.org/10.1016/S0040-1951(97)00144-3

    Article  Google Scholar 

  • Thompson AB, Schulmann K, Jezek J (1997b) Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens. Geology 25:491–494. https://doi.org/10.1130/0091-7613(1997)025%3c0491:ETAEOL%3e2.3.CO;2

    Article  Google Scholar 

  • Tikoff B, Teyssier C, Waters CL (2002) Clutch tectonics and partial attachment of lithospheric layers. EUG Special Publication 1, pp 93–117

  • Tikoff B, Russo R, Teyssier C, Tommasi A (2004) Mantle-driven deformation of orogenic zones and clutch tectonics. Geological Society of London Special Publication 227, pp 41–64. https://doi.org/10.1144/GSL.SP.2004.227.01.03

  • Tommasi A, Vauchez A (2001) Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle. Earth Planet Sci Lett 185:199–210. https://doi.org/10.1016/S0012-821X(00)00350-2

    Article  Google Scholar 

  • Tucker RD, Roig JY, Moine B, Delor C, Peters SG (2014) A geological synthesis of the Precambrian shield in Madagascar. J Afr Earth Sci 94:9–30. https://doi.org/10.1016/j.jafrearsci.2014.02.001

    Article  Google Scholar 

  • Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the Earth’s mantle. Tectonophysics 558:1–27

    Article  Google Scholar 

  • Windley BF, Razafiniparany A, Razakamanana T, Ackermand D (1994) Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal. Geol Rundsch 83:642–649

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all Madagascan and international geoscientists who performed an impressive cartographic work throughout the Island. We thank Stanisław Mazur and Anonymous Reviewer for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Emmanuel Martelat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martelat, JE., Cardon, H., Lardeaux, JM. et al. Geophysical evidences for large-scale mullion-type structures at the mantle–crust interface in southern Madagascar: implications for Neoproterozoic orogeny. Int J Earth Sci (Geol Rundsch) 109, 1487–1500 (2020). https://doi.org/10.1007/s00531-020-01840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01840-w

Keywords

Navigation