Skip to main content
Log in

Removal of 4-chloro-2-nitrophenol occurring in drug and pesticide waste by adsorption onto nano-titanium dioxide

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The present study deals with removal of 4-chloro-2-nitrophenol (4C2NP) as a model contaminant from pharmaceutical and pesticide industries using titanium dioxide nanoparticles as an adsorbent. 4C2NP is recalcitrant and persistent toward biodegradation and its generation in aqueous environment during formulation, distribution and field application of pesticides is often unavoidable. Batch experiments were carried out to investigate the effect of contact time, nano-titanium dioxide dosage, initial pH, initial 4C2NP concentration and temperature on adsorption efficiency. The results showed that the adsorption capacity was increased with increasing 4C2NP concentration and temperature. Optimum conditions for 4C2NP adsorption were found to be initial pH ≈ 2, nano-titanium dioxide dosage ≈ 0.01 g/250 mL and equilibrium time ≈ 1 h. Titanium dioxide nanoparticles recorded a maximum capacity of 86.3 mg/g at optimal conditions. The linear correlation coefficients of Langmuir, Freundlich and Temkin isotherms were obtained. The results revealed that the Freundlich isotherm fitted the experimental data better than the other isotherm models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acero JL, Benitez FJ, Leal AI, Real FJ (2005) Removal of phenolic compounds in water by ultrafiltration membrane treatments. J Environ Sci Health A 40(8):1585–1603

    CAS  Google Scholar 

  • Agarry SE, Solomon BO (2008) Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Tech 5(2):223–232

    CAS  Google Scholar 

  • Anbia M, Ghaffari A (2009) Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer. Appl Surf Sci 255(23):9487–9492

    Article  CAS  Google Scholar 

  • Arellano-Cardenas S, Gallardo-Velazquez T, Osorio-Revilla G, Lopez-Cortezl MS, Gomez-Pereal B et al (2005) Adsorption of phenol and dichlorophenols from aqueous solutions by porous clay heterostructure (PCH). J Mex Chem Soc 49(3):287–291

    CAS  Google Scholar 

  • Bekkouche S, Bouhelassa M, Hadj Salah N, Meghlaoui FZ et al (2004) Study of adsorption of phenol on titanium oxide (TiO2). Desalination 166:355–362

    Article  CAS  Google Scholar 

  • Belarbi H, Al-Malack MH (2010) Adsorption and stabilization of phenol by modified local clay. Int J Environ Res 4(4):855–860

    CAS  Google Scholar 

  • Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C (2009) Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J Hazard Mater 170(2):836–844

    Article  CAS  Google Scholar 

  • Benitez FJ, Beltran-Heredia J, Acero JL, Rubio FJ (2000) Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. J Hazard Mater B 79(3):271–285

    Article  CAS  Google Scholar 

  • Bourikas K, Stylidi M, Kondarides DI, Verykios X (2005) Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir 21(20):9222–9230

    Article  CAS  Google Scholar 

  • Calace N, Nardi E, Petronio BM, Pietroletti M (2002) Adsorption of phenols by peparmill sludge. Environ Poll 118(3):315–319

    Article  CAS  Google Scholar 

  • Chen S, Xu ZP, Zhang O, Lu GQ, Hao ZP, Liu S (2009) Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide. Sep Purif Technol 67(2):194–200

    Article  CAS  Google Scholar 

  • Dabhade MA, Saidutta MB, Murthy DVR (2009) Adsorption of phenol on granular activated carbon from nutrient medium:equilibrium and kinetic study. Int J Environ Res 3(4):557–568

    CAS  Google Scholar 

  • Derylo-Marczewska A, Miroslaw K, Marczewski AW, Sternik D (2010) Studies of adsorption equilibria and kinetics of o-, m-, p-nitro- and chlorophenols on microporous carbons from aqueous solutions. Adsorption 16:359–375

    Article  CAS  Google Scholar 

  • Dursun AY, Tepe O (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater 126:105–111

    Article  CAS  Google Scholar 

  • Gharbani P, Khosravi M, Tabatabaii SM, Zare K, Dastmalchi S, Mehrizad A (2010) Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone. Int J Environ Sci Tech 7(2):377–384

    CAS  Google Scholar 

  • Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L, Rodriguez JJ (2004) Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. Water Res 38(13):3043–3050

    Article  CAS  Google Scholar 

  • Hameed BH, Ahmad AL, Latif KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments 75(1):143–149

    Article  CAS  Google Scholar 

  • Haque E, Khan NA, Talapaneni SN, Vinu A, Jegal J, Jhung SH et al (2010) Adsorption of phenol on mesoporous carbon cmk-3: effect of textural properties. B Kor Chem Soc 31(6):1638–1642

    Article  CAS  Google Scholar 

  • Hashizume H (2004) Adsorption of some aromatic compounds by a synthetic mesoporous silicate. J Environ Sci Health A 39(10):2615–2625

    Article  Google Scholar 

  • Khan Z, Anjaneyulu Y (2005) Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites. J Hazard Mater B 118:161–169

    Article  CAS  Google Scholar 

  • Kumar A, Kumar S, Kumar S, Gupta D (2007) Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: equilibrium and kinetics. J Hazard Mater 147:155–166

    Article  CAS  Google Scholar 

  • Lei Z, Yuan Z, Hongmei L, Na L, Xueyan L, Xuejun G (2010) Kinetic and thermodynamic studies of adsorption of gallium(III) on nano-TiO2. Rare Metals 29(1):16–20

    Article  Google Scholar 

  • Mahvi AH (2008) Application of agricultural fibers in pollution removal from aqueous solution. Int J Environ Sci Tech 5(2):275–285

    CAS  Google Scholar 

  • Nandi BK, Goswami A, Purkait MK (2009) Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater 161(1):387–395

    Article  CAS  Google Scholar 

  • Onal Y, Akmil-Basar C, Sarici-Ozdemir C (2007) Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. J Hazard Mater 146(1):194–203

    Article  CAS  Google Scholar 

  • Robert D, Parra S, Pulgarin C, Krzton A, Weber JV (2000) Chemisorption of phenols and acids on TiO2 surface. Appl Surf Sci 167:51–58

    Article  CAS  Google Scholar 

  • Roostaei N, Tezel FH (2004) Removal of phenol from aqueous solutions by adsorption. J Environ Manage 70(2):157–164

    Article  Google Scholar 

  • Samarghandi MR, Nouri J, Mesdaghinia AR, Mahvi AH, Nasseri S, Vaezi F (2007) Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int J Environ Sci Tech 4(1):19–25

    CAS  Google Scholar 

  • Saritha P, Aparana C, Himabindu V, Anjaneyulu Y (2007) Advanced oxidation of 4-chloro-2-nitrophenol (4C–2-NP): a comparative study. J Hazard Mater 149(3):609–614

    Article  CAS  Google Scholar 

  • Sokol W, Korpal W (2004) Determination of the optimal operational parameters for a three-phase fluidized bed bioreactor with a light biomass support when used in treatment of phenolic wastewaters. Biochem Eng J 20:49–56

    Article  CAS  Google Scholar 

  • Subramanyam B, Das A (2009) Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil. Int J Environ Sci Tech 6(4):633–640

    CAS  Google Scholar 

  • Terzyk AP (2003) Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J Colloid Interf Sci 268:301–329

    Article  CAS  Google Scholar 

  • Tseng RL, Wu KT, Wu FC, Juang RS (2010) Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons. J Environ Manage 91:2208–2214

    Article  CAS  Google Scholar 

  • Wang Z, Zhang LS, Jing ZQ (2010) Study the adsorption of phenol on attapulgite-zeolite nano-structure adsorbent from aqueous solution. Key Eng Mat 426:118–121

    Article  Google Scholar 

  • WHO (1963) Guidelines for drinking-water quality: international standards for drinking water. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank from the School of Pharmacy, Tabriz-Iran, specially Dr. Hamidi and Miss Faridi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mehrizad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrizad, A., Zare, K., Aghaie, H. et al. Removal of 4-chloro-2-nitrophenol occurring in drug and pesticide waste by adsorption onto nano-titanium dioxide. Int. J. Environ. Sci. Technol. 9, 355–360 (2012). https://doi.org/10.1007/s13762-012-0038-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0038-6

Keywords

Navigation