Skip to main content

Advertisement

Log in

Bench to Cribside: the Path for Developing a Neuroprotectant

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The consequences of perinatal brain injury include immeasurable anguish for families and substantial ongoing costs for care and support of effected children. Factors associated with perinatal brain injury in the preterm infant include inflammation and infection, and with increasing gestational age, a higher proportion is related to hypoxic–ischemic events, such as stroke and placental abruption. Over the past decade, we have acquired new insights in the mechanisms underpinning injury and many new tools to monitor outcome in perinatal brain injury in our experimental models. By embracing these new technologies, we can expedite the screening of novel therapies. This is critical as despite enormous efforts of the research community, hypothermia is the only viable neurotherapeutic, and this procedure is limited to term birth and postcardiac arrest hypoxic–ischemic events. Importantly, experimental and preliminary data in humans also indicate a considerable therapeutic potential for melatonin against perinatal brain injury. However, even if this suggested potential is proven, the complexity of the human condition means we are likely to need additional neuroprotective and regenerative strategies. Thus, within this review, we will outline what we consider the key stages of preclinical testing and development for a neuroprotectant or regenerative neurotherapy for perinatal brain injury. We will also highlight examples of novel small animal physiological and behavioral testing that gives small animal preclinical models greater clinical relevance. We hope these new tools and an integrated bench to cribside strategic plan will facilitate the fulfillment of our overarching goal, improving the long-term brain health and quality of life for infants suffering perinatal brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thornton C, Rousset CI, Kichev A, Miyakuni Y, Vontell R, Baburamani AA, et al. Molecular mechanisms of neonatal brain injury. Neurol Res Int. 2012;2012:506320.

    PubMed  Google Scholar 

  2. Dammann O, Leviton A. Inflammatory brain damage in preterm newborns—dry numbers, wet lab, and causal inferences. Early Hum Dev. 2004;79(1):1–15.

    Article  PubMed  Google Scholar 

  3. Leviton A. Why the term neonatal encephalopathy should be preferred over neonatal hypoxic–ischemic encephalopathy. Am J Obstet Gynecol. 2012;2012:23.

    Google Scholar 

  4. Lee J, Croen LA, Lindan C, Nash KB, Yoshida CK, Ferriero DM, et al. Predictors of outcome in perinatal arterial stroke: a population-based study. Ann Neurol. 2005;58(2):303–8.

    Article  PubMed  Google Scholar 

  5. Lawn JE, Kinney M, Lee AC, Chopra M, Donnay F, Paul VK, et al. Reducing intrapartum-related deaths and disability: can the health system deliver? Int J Gynecol Obstet. 2009;07 Suppl(1):S123-40–S40-2.

    Google Scholar 

  6. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355(7):685–94.

    Article  PubMed  CAS  Google Scholar 

  7. Mallard C, Welin AK, Peebles D, Hagberg H, Kjellmer I. White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res. 2003;28(2):215–23.

    Article  PubMed  CAS  Google Scholar 

  8. Mallard EC, Williams CE, Johnston BM, Gluckman PD. Increased vulnerability to neuronal damage after umbilical cord occlusion in fetal sheep with advancing gestation. Am J Obstet Gynecol. 1994;170(1 Pt 1):206–14.

    PubMed  CAS  Google Scholar 

  9. Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic–ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ. 2010;340:c363.

    Article  PubMed  Google Scholar 

  10. Rutherford MA, Azzopardi D, Whitelaw A, Cowan F, Renowden S, Edwards AD, et al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic–ischemic encephalopathy. Pediatrics. 2005;116(4):1001–6.

    Article  PubMed  Google Scholar 

  11. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med. 2012;366(22):2085–92.

    Article  PubMed  CAS  Google Scholar 

  12. Johnston MV, Fatemi A, Wilson MA, Northington F. Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol. 2011;10(4):372–82.

    Article  PubMed  Google Scholar 

  13. Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol. 2011;70(5):698–712.

    Article  PubMed  Google Scholar 

  14. Robertson NJ, Tan S, Groenendaal F, van Bel F, Juul SE, Bennet L, et al. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant? J Pediactrics. 2012;160(4):544–52 e4.

    Article  Google Scholar 

  15. Fleiss B, Gressens P. Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? Lancet Neurol. 2012;11(6):556–66.

    Article  PubMed  Google Scholar 

  16. Fan P, Yamauchi T, Noble LJ, Ferriero DM. Age-dependent differences in glutathione peroxidase activity after traumatic brain injury. J Neurotrauma. 2003;20(5):437–45.

    Article  PubMed  Google Scholar 

  17. Vexler ZS, Ferriero DM. Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol. 2001;6(2):99–108.

    Article  PubMed  CAS  Google Scholar 

  18. Mesples B, Plaisant F, Fontaine RH, Gressens P. Pathophysiology of neonatal brain lesions: lessons from animal models of excitotoxicity. Acta Paediatr. 2005;94(2):185–90.

    Article  PubMed  CAS  Google Scholar 

  19. Hagberg H, Peebles D, Mallard C. Models of white matter injury: comparison of infectious, hypoxic–ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev. 2002;8(1):30–8.

    Article  PubMed  Google Scholar 

  20. Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. Int J Dev Neurosc. 2009;27(8):863–71.

    Article  CAS  Google Scholar 

  21. Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech. 2010;3(11–12):678–88.

    Article  PubMed  Google Scholar 

  22. Vannucci RC, Vannucci SJ. Perinatal hypoxic–ischemic brain damage: evolution of an animal model. Dev Neurosci. 2005;27(2–4):81–6.

    Article  PubMed  CAS  Google Scholar 

  23. Eklind S, Hagberg H, Wang X, Savman K, Leverin AL, Hedtjarn M, et al. Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res. 2006;60(2):161–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sizonenko SV, Sirimanne E, Mayall Y, Gluckman PD, Inder T, Williams C. Selective cortical alteration after hypoxic–ischemic injury in the very immature rat brain. Pediatr Res. 2003;54(2):263–9.

    Article  PubMed  Google Scholar 

  25. Derugin N, Ferriero DM, Vexler ZS. Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res. 1998;32(4):349–53.

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien FE, Iwata O, Thornton JS, De Vita E, Sellwood MW, Iwata S, et al. Delayed whole-body cooling to 33 or 35 degrees C and the development of impaired energy generation consequential to transient cerebral hypoxia–schemia in the newborn piglet. Pediatrics. 2006;117(5):1549–59.

    Article  PubMed  Google Scholar 

  27. Gressens P, Dingley J, Plaisant F, Porter H, Schwendimann L, Verney C, et al. Analysis of neuronal, glial, endothelial, axonal and apoptotic markers following moderate therapeutic hypothermia and anesthesia in the developing piglet brain. Brain Pathol. 2008;18(1):10–20.

    Article  PubMed  Google Scholar 

  28. Powell E, Faulkner S, Bainbridge A, Kereyni A, Kelen D, Chandrasekaran M, et al. Improved neuroprotection with melatonin-augmented hypothermia vs hypothermia alone in a perinatal asphyxia model: a randomized study. Pediatr Res. 2011;70:67.

    Article  Google Scholar 

  29. Thoresen M, Penrice J, Lorek A, Cady EB, Wylezinska M, Kirkbride V, et al. Mild hypothermia after severe transient hypoxia–ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1995;37(5):667–70.

    Article  PubMed  CAS  Google Scholar 

  30. Chahboune H, Ment LR, Stewart WB, Rothman DL, Vaccarino FM, Hyder F, et al. Hypoxic injury during neonatal development in murine brain: correlation between in vivo DTI findings and behavioral assessment. Cereb Cortex. 2009;19(12):2891–901.

    Article  PubMed  Google Scholar 

  31. Scafidi S, O’Brien J, Hopkins I, Robertson C, Fiskum G, McKenna M. Delayed cerebral oxidative glucose metabolism after traumatic brain injury in young rats. J Neurochem. 2009;109 Suppl 1:189–97.

    Article  PubMed  CAS  Google Scholar 

  32. Baud O, Daire JL, Dalmaz Y, Fontaine RH, Krueger RC, Sebag G, et al. Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol. 2004;14(1):1–10.

    Article  PubMed  Google Scholar 

  33. Olivier P, Fontaine RH, Loron G, Van Steenwinckel J, Biran V, Massonneau V, et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One. 2009;4(9):e7128.

    Article  PubMed  CAS  Google Scholar 

  34. Tan S, Drobyshevsky A, Jilling T, Ji X, Ullman LM, Englof I, et al. Model of cerebral palsy in the perinatal rabbit. J Child Neurol. 2005;20(12):972–9.

    Article  PubMed  Google Scholar 

  35. Miller SL, Yan EB, Castillo-Melendez M, Jenkin G, Walker DW. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci. 2005;27(2–4):200–10.

    Article  PubMed  CAS  Google Scholar 

  36. Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res. 2007;61(2):153–8.

    Article  PubMed  CAS  Google Scholar 

  37. Riddle A, Dean J, Buser JR, Gong X, Maire J, Chen K, et al. Histopathological correlates of magnetic resonance imaging-defined chronic perinatal white matter injury. Ann Neurol. 2011;70(3):493–507.

    Article  PubMed  Google Scholar 

  38. van de Looij Y, Lodygensky GA, Dean J, Lazeyras F, Hagberg H, Kjellmer I, et al. High-field diffusion tensor imaging characterization of cerebral white matter injury in LPS-exposed fetal sheep. Pediatr Res. 2012;(in press).

  39. Hutton LC, Abbass M, Dickinson H, Ireland Z, Walker DW. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev Neurosci. 2009;31(5):437–51.

    Article  PubMed  CAS  Google Scholar 

  40. Fleiss B, Coleman HA, Castillo-Melendez M, Ireland Z, Walker DW, Parkington HC. Effects of birth asphyxia on neonatal hippocampal structure and function in the spiny mouse. Int J Dev Neuro. 2011;29(7):757–66.

    Article  CAS  Google Scholar 

  41. Juul SE, Aylward E, Richards T, McPherson RJ, Kuratani J, Burbacher TM. Prenatal cord clamping in newborn Macaca nemestrina: a model of perinatal asphyxia. Dev Neurosci. 2007;29(4–5):311–20.

    Article  PubMed  CAS  Google Scholar 

  42. Jacobson Misbe EN, Richards TL, McPherson RJ, Burbacher TM, Juul SE. Perinatal asphyxia in a nonhuman primate model. Dev Neurosci. 2011;33(3–4):210–21.

    Article  PubMed  CAS  Google Scholar 

  43. Inder T, Neil J, Kroenke C, Dieni S, Yoder B, Rees S. Investigation of cerebral development and injury in the prematurely born primate by magnetic resonance imaging and histopathology. Dev Neurosci. 2005;27(2–4):100–11.

    Article  PubMed  CAS  Google Scholar 

  44. Verney C, Rees S, Biran V, Thompson M, Inder T, Gressens P. Neuronal damage in the preterm baboon: impact of the mode of ventilatory support. J Neuropathol Exp Neurol. 2010;69(5):473–82.

    Article  PubMed  Google Scholar 

  45. Wang X, Rousset CI, Hagberg H, Mallard C. Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med. 2006;11(5):343–53.

    Article  PubMed  Google Scholar 

  46. Rousset CI, Kassem J, Olivier P, Chalon S, Gressens P, Saliba E. Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury. J Neuropathol Exp Neurol. 2008;67(10):994–1000.

    Article  PubMed  Google Scholar 

  47. Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, et al. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol. 1997;177(4):797–802.

    Article  PubMed  CAS  Google Scholar 

  48. Debillon T, Gras-Leguen C, Leroy S, Caillon J, Roze JC, Gressens P. Patterns of cerebral inflammatory response in a rabbit model of intrauterine infection-mediated brain lesion. Brain Res Dev Brain Res. 2003;145(1):39–48.

    Article  PubMed  CAS  Google Scholar 

  49. Gressens P, Schwendimann L, Husson I, Sarkozy G, Mocaer E, Vamecq J, et al. Agomelatine, a melatonin receptor agonist with 5-HT(2C) receptor antagonist properties, protects the developing murine white matter against excitotoxicity. Eur J Pharmacol. 2008;588(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  50. Du X, Fleiss B, Li H, D’Angelo B, Sun Y, Zhu C, et al. Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One. 2011;6(5):e19583.

    Article  PubMed  CAS  Google Scholar 

  51. Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin P, Stoltenburg-Didinger G, et al. Systemic inflammation disrupts the developmental program of white matter. Ann Neurol. 2011;70(4):550–65.

    Article  PubMed  CAS  Google Scholar 

  52. Chen YH, Xu DX, Wang JP, Wang H, Wei LZ, Sun MF, et al. Melatonin protects against lipopolysaccharide-induced intra-uterine fetal death and growth retardation in mice. J Pineal Res. 2006;40(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  53. Marret S, Mukendi R, Gadisseux JF, Gressens P, Evrard P. Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol. 1995;54(3):358–70.

    Article  PubMed  CAS  Google Scholar 

  54. Bac P, Maurois P, Dupont C, Pages N, Stables JP, Gressens P, et al. Magnesium deficiency-dependent audiogenic seizures (MDDASs) in adult mice: a nutritional model for discriminatory screening of anticonvulsant drugs and original assessment of neuroprotection properties. J Neurosci. 1998;18(11):4363–73.

    PubMed  CAS  Google Scholar 

  55. Husson I, Mesples B, Bac P, Vamecq J, Evrard P, Gressens P. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol. 2002;51(1):82–92.

    Article  PubMed  CAS  Google Scholar 

  56. Follett PL, Rosenberg PA, Volpe JJ, Jensen FE. NBQX attenuates excitotoxic injury in developing white matter. J Neurosci. 2000;20(24):9235–41.

    PubMed  CAS  Google Scholar 

  57. Schmadel S, Schwabe K, Koch M. Effects of neonatal excitotoxic lesions of the entorhinal cortex on cognitive functions in the adult rat. Neuroscience. 2004;128(2):365–74.

    Article  PubMed  CAS  Google Scholar 

  58. Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, Garcia-Maurino S, Reiter RJ, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004;18(3):537–9.

    PubMed  CAS  Google Scholar 

  59. Nguyen-Legros J, Chanut E, Versaux-Botteri C, Simon A, Trouvin JH. Dopamine inhibits melatonin synthesis in photoreceptor cells through a D2-like receptor subtype in the rat retina: biochemical and histochemical evidence. J Neurochem. 1996;67(6):2514–20.

    Article  PubMed  CAS  Google Scholar 

  60. Gern WA, Ralph CL. Melatonin synthesis by the retina. Science. 1979;204(4389):183–4.

    Article  PubMed  CAS  Google Scholar 

  61. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature’s most versatile biological signal? FEBS J. 2006;273(13):2813–38.

    Article  PubMed  CAS  Google Scholar 

  62. Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Sign Recept. 2000;9(3–4):160–71.

    Article  CAS  Google Scholar 

  63. Poeggeler B, Reiter RJ, Tan DX, Chen LD, Manchester LC. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res. 1993;14(4):151–68.

    Article  PubMed  CAS  Google Scholar 

  64. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine. 2005;27(2):189–200.

    Article  PubMed  CAS  Google Scholar 

  65. Yon JH, Carter LB, Reiter RJ, Jevtovic-Todorovic V. Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis. 2006;21(3):522–30.

    Article  PubMed  CAS  Google Scholar 

  66. Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J. 2004;18(7):869–71.

    PubMed  CAS  Google Scholar 

  67. Blask DE, Sauer LA, Dauchy RT. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem. 2002;2(2):113–32.

    Article  PubMed  CAS  Google Scholar 

  68. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012;351(2):152–66.

    Article  PubMed  CAS  Google Scholar 

  69. Benitez-King G, Huerto-Delgadillo L, Anton-Tay F. Binding of 3H-melatonin to calmodulin. Life Sci. 1993;53(3):201–7.

    Article  PubMed  CAS  Google Scholar 

  70. Sanchez-Barcelo EJ, Mediavilla MD, Reiter RJ. Clinical uses of melatonin in pediatrics. Int J Pediatr. 2011;2011:892624.

    PubMed  Google Scholar 

  71. Jan JE, O’Donnell ME. Use of melatonin in the treatment of paediatric sleep disorders. J Pineal Res. 1996;21(4):193–9.

    Article  PubMed  CAS  Google Scholar 

  72. Gitto E, Reiter RJ, Cordaro SP, La Rosa M, Chiurazzi P, Trimarchi G, et al. Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol. 2004;21(4):209–16.

    Article  PubMed  Google Scholar 

  73. Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, et al. Effects of melatonin treatment in septic newborns. Pediatr Res. 2001;50(6):756–60.

    Article  PubMed  CAS  Google Scholar 

  74. Gitto E, Reiter RJ, Amodio A, Romeo C, Cuzzocrea E, Sabatino G, et al. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res. 2004;36(4):250–5.

    Article  PubMed  CAS  Google Scholar 

  75. Leconte I, Bailey G, Davis-Bruno K, Hew KW, Kim J, Silva Lima B, et al. Value of juvenile animal studies. Birth Defects Res B Dev Reprod Toxicol. 2011;92(4):292–303.

    PubMed  CAS  Google Scholar 

  76. Morford LL, Bowman CJ, Blanset DL, Bogh IB, Chellman GJ, Halpern WG, et al. Preclinical safety evaluations supporting pediatric drug development with biopharmaceuticals: strategy, challenges, current practices. Birth Defects Res B Dev Reprod Toxicol. 2011;92(4):359–80.

    PubMed  CAS  Google Scholar 

  77. FDA CfDEaR (2006) Nonclinical Safety Evaluation of Pediatric Drug Products. (FDA), F. a. D. A., ed). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm079247.pdf

  78. Guideline on the need for non-clinical testing in juvenile animals of pharmaceuticals for pediatric indications, EMEA/CHMP/SWP/169215/2005 (2005).

  79. Espinar A, Garcia-Oliva A, Isorna EM, Quesada A, Prada FA, Guerrero JM. Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo. J Pineal Res. 2000;28(2):81–8.

    Article  PubMed  CAS  Google Scholar 

  80. Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romeo C, Gitto P, et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res. 2005;39(3):287–93.

    Article  PubMed  CAS  Google Scholar 

  81. Carloni S, Perrone S, Buonocore G, Longini M, Proietti F, Balduini W. Melatonin protects from the long-term consequences of a neonatal hypoxic–ischemic brain injury in rats. J Pineal Res. 2008;44(2):157–64.

    Article  PubMed  CAS  Google Scholar 

  82. Mace E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M. Functional ultrasound imaging of the brain. Nat Methods. 2011;8(8):662–4.

    Article  PubMed  CAS  Google Scholar 

  83. Hunter CJ, Bennet L, Power GG, Roelfsema V, Blood AB, Quaedackers JS, et al. Key neuroprotective role for endogenous adenosine A1 receptor activation during asphyxia in the fetal sheep. Stroke. 2003;34(9):2240–5.

    Article  PubMed  CAS  Google Scholar 

  84. Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, Price D, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain. 2012; (in press).

  85. Dutra F, Banchero G. Polwarth and Texel ewe parturition duration and its association with lamb birth asphyxia. J Anim Sci. 2011;89(10):3069–78.

    Article  PubMed  CAS  Google Scholar 

  86. Baburamani AA, Cabalag C, Castillo-Melendez M, Hutton LC, Walker D. Consequences of brief, prenatal asphyxia on pregnancy outcome, brain development and newborn lamb behaviour in sheep. Fetal and Neonatal Society 35th Annual Meeting, Maastricht, Netherlands. 2008;Abstract 0802.

  87. Dilger RN, Johnson RW. Behavioral assessment of cognitive function using a translational neonatal piglet model. Brain Behav Immun. 2010;24(7):1156–65.

    Article  PubMed  CAS  Google Scholar 

  88. Marklund SL. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem J. 1984;222(3):649–55.

    PubMed  CAS  Google Scholar 

  89. Markert CL, Moller F. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc Natl Acad Sci U S A. 1959;45(5):753–63.

    Article  PubMed  CAS  Google Scholar 

  90. Dieni S, Inder T, Yoder B, Briscoe T, Camm E, Egan G, et al. The pattern of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Neuropathol Exp Neurol. 2004;63(12):1297–309.

    PubMed  Google Scholar 

  91. Rees S, Loeliger M, Shields A, Shaul PW, McCurnin D, Yoder B, et al. The effects of postnatal estrogen therapy on brain development in preterm baboons. Am J Obstet Gynecol. 2011;204(2):177 e8–14.

    Article  CAS  Google Scholar 

  92. Rees SM, Camm EJ, Loeliger M, Cain S, Dieni S, McCurnin D, et al. Inhaled nitric oxide: effects on cerebral growth and injury in a baboon model of premature delivery. Pediatr Res. 2007;61(5 Pt 1):552–8.

    PubMed  CAS  Google Scholar 

  93. Nunez JL, McCarthy MM. Estradiol exacerbates hippocampal damage in a model of preterm infant brain injury. Endocrinology. 2003;144(6):2350–9.

    Article  PubMed  CAS  Google Scholar 

  94. Feng Y, Fratkins JD, LeBlanc MH. Estrogen attenuates hypoxic–ischemic brain injury in neonatal rats. Eur J Pharmacol. 2005;507(1–3):77–86.

    Article  PubMed  CAS  Google Scholar 

  95. Nijboer CH, Groenendaal F, Kavelaars A, Hagberg HH, van Bel F, Heijnen CJ. Gender-specific neuroprotection by 2-iminobiotin after hypoxia–ischemia in the neonatal rat via a nitric oxide independent pathway. J Cereb Blood Flow Metab. 2007;27(2):282–92.

    Article  PubMed  CAS  Google Scholar 

  96. Charriaut-Marlangue C, Bonnin P, Gharib A, Leger PL, Villapol S, Pocard M, et al. Inhaled nitric oxide reduces brain damage by collateral recruitment in a neonatal stroke model. Stroke. 2012;43(11):3078–84.

    Article  PubMed  CAS  Google Scholar 

  97. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol. 2004;56(3):407–15.

    Article  PubMed  Google Scholar 

  98. Zarow C, Kim TS, Singh M, Chui HC. A standardized method for brain-cutting suitable for both stereology and MRI-brain co-registration. J Neurosci Methods. 2004;139(2):209–15.

    Article  PubMed  CAS  Google Scholar 

  99. Singh M, Rajagopalan A, Kim TS, Hwang D, Chui H, Zhang XL, et al. Co-registration of in-vivo human MRI brain images to postmortem histological microscopic images. Int J Imaging Syst Technol. 2008;18(5–6):325–35.

    Article  PubMed  Google Scholar 

  100. Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, et al. Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun. 2011;25(6):1113–22.

    Article  PubMed  CAS  Google Scholar 

  101. Pradillo JM, Denes A, Greenhalgh AD, Boutin H, Drake C, McColl BW, et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats. J Cereb Blood Flow Metab. 2012;32(9):1810–9.

    Article  PubMed  CAS  Google Scholar 

  102. Gressens P, Rogido M, Paindaveine B, Sola A. The impact of neonatal intensive care practices on the developing brain. J Pediatr. 2002;140(6):646–53.

    Article  PubMed  Google Scholar 

  103. Walker SM. Management of procedural pain in NICUs remains problematic. Paediatr Anaesth. 2005;15(11):909–12.

    Article  PubMed  Google Scholar 

  104. Sanders RD, Davidson A. Anesthetic-induced neurotoxicity of the neonate: time for clinical guidelines? Paediatr Anaesth. 2009;19(12):1141–6.

    Article  PubMed  Google Scholar 

  105. Thoresen M, Satas S, Loberg EM, Whitelaw A, Acolet D, Lindgren C, et al. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic–ischemic insult is not neuroprotective. Pediatr Res. 2001;50(3):405–11.

    Article  PubMed  CAS  Google Scholar 

  106. Faulkner S, Bainbridge A, Kato T, Chandrasekaran M, Kapetanakis AB, Hristova M, et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol. 2011;70(1):133–50.

    Article  PubMed  CAS  Google Scholar 

  107. Simbruner G, Mittal RA, Rohlmann F, Muche R. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010;126(4):e771–8.

    Article  PubMed  Google Scholar 

  108. Brummelte S, Grunau RE, Chau V, Poskitt KJ, Brant R, Vinall J, et al. Procedural pain and brain development in premature newborns. Ann Neurol. 2012;71(3):385–96.

    Article  PubMed  Google Scholar 

  109. Liu X, Tooley J, Loberg EM, Suleiman MS, Thoresen M. Immediate hypothermia reduces cardiac troponin I after hypoxic–ischemic encephalopathy in newborn pigs. Pediatr Res. 2011;70(4):352–6.

    PubMed  CAS  Google Scholar 

  110. Pedreira PR, Garcia-Prieto E, Parra D, Astudillo A, Diaz E, Taboada F, et al. Effects of melatonin in an experimental model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295(5):L820–7.

    Article  PubMed  CAS  Google Scholar 

  111. Pan L, Fu JH, Xue XD, Xu W, Zhou P, Wei B. Melatonin protects against oxidative damage in a neonatal rat model of bronchopulmonary dysplasia. World J Pediatr. 2009;5(3):216–21.

    Article  PubMed  CAS  Google Scholar 

  112. Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke. 1976;7(1):46–53.

    Article  PubMed  CAS  Google Scholar 

  113. Sacco RL, Boden-Albala B, Gan R, Chen X, Kargman DE, Shea S, et al. Stroke incidence among white, black, and Hispanic residents of an urban community: the Northern Manhattan Stroke Study. Am J Epidemiol. 1998;147(3):259–68.

    Article  PubMed  CAS  Google Scholar 

  114. Tioseco JA, Aly H, Essers J, Patel K, El-Mohandes AA. Male sex and intraventricular hemorrhage. Pediatr Crit Care Med. 2006;7(1):40–4.

    Article  PubMed  Google Scholar 

  115. Reisert I, Lieb K, Beyer C, Pilgrim C. Sex differentiation of rat hippocampal GABAergic neurons. Eur J Neurosci. 1996;8(8):1718–24.

    Article  PubMed  CAS  Google Scholar 

  116. Dewing P, Shi T, Horvath S, Vilain E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res Mol Brain Res. 2003;118(1–2):82–90.

    Article  PubMed  CAS  Google Scholar 

  117. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25(4):502–12.

    Article  PubMed  CAS  Google Scholar 

  118. Loihl AK, Asensio V, Campbell IL, Murphy S. Expression of nitric oxide synthase (NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2 gene-deficient mice. Brain Res. 1999;830(1):155–64.

    Article  PubMed  CAS  Google Scholar 

  119. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25(4):502–12.

    Article  PubMed  CAS  Google Scholar 

  120. Liu F, Li Z, Li J, Siegel C, Yuan R, McCullough LD. Sex differences in caspase activation after stroke. Stroke. 2009;40(5):1842–8.

    Article  PubMed  CAS  Google Scholar 

  121. Fleiss B, Nilsson MK, Blomgren K, Mallard C. Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic–ischaemic brain injury. J Neuroinflammation. 2012;9(1):70.

    Article  PubMed  CAS  Google Scholar 

  122. Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, et al. Lipopolysaccharide sensitizes neonatal hypoxic–ischemic brain injury in a MyD88-dependent manner. J Immunol. 2009;183(11):7471–7.

    Article  PubMed  CAS  Google Scholar 

  123. Aden U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser U, Lampa J, et al. Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun. 2010;24(5):747–58.

    Article  PubMed  CAS  Google Scholar 

  124. Wang X, Hagberg H, Nie C, Zhu C, Ikeda T, Mallard C. Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J Neuropathol Exp Neurol. 2007;66(6):552–61.

    Article  PubMed  CAS  Google Scholar 

  125. Dean JM, Wang X, Kaindl AM, Gressens P, Fleiss B, Hagberg H, et al. Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun. 2009 Nov 10.

  126. Johansson BB. Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia. Stroke. 1996;27(2):324–6.

    Article  PubMed  CAS  Google Scholar 

  127. Ortuzar N, Argandona EG, Bengoetxea H, Lafuente JV. Combination of intracortically administered VEGF and environmental enrichment enhances brain protection in developing rats. J Neural Transm. 2011;118(1):135–44.

    Article  PubMed  CAS  Google Scholar 

  128. Will B, Galani R, Kelche C, Rosenzweig MR. Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002). Prog Neurobiol. 2004;72(3):167–82.

    Article  PubMed  Google Scholar 

  129. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–72.

    Article  PubMed  CAS  Google Scholar 

  130. Cilio MR, Ferriero DM. Synergistic neuroprotective therapies with hypothermia. Semin Fetal Neonatal Med. 2010;15(5):293–8.

    Article  PubMed  Google Scholar 

  131. Gunn AJ, Gluckman PD, Gunn TR. Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics. 1998;102(4 Pt 1):885–92.

    Article  PubMed  CAS  Google Scholar 

  132. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N Engl J Med. 2005;353(15):1574–84.

    Article  PubMed  CAS  Google Scholar 

  133. Filippi L, la Marca G, Cavallaro G, Fiorini P, Favelli F, Malvagia S, et al. Phenobarbital for neonatal seizures in hypoxic–ischemic encephalopathy: a pharmacokinetic study during whole body hypothermia. Epilepsia. 2011;52(4):794–801.

    Article  PubMed  CAS  Google Scholar 

  134. Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35(9):2196–204.

    Article  PubMed  CAS  Google Scholar 

  135. Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res. 1998;24(2):83–9.

    Article  PubMed  CAS  Google Scholar 

  136. Penev PD, Zee PC. Melatonin: a clinical perspective. Ann Neurol. 1997;42(4):545–53.

    Article  PubMed  CAS  Google Scholar 

  137. Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J. 2005;352(1):9–19.

    Article  CAS  Google Scholar 

  138. Arnaud C, Daubisse-Marliac L, White-Koning M, Pierrat V, Larroque B, Grandjean H, et al. Prevalence and associated factors of minor neuromotor dysfunctions at age 5 years in prematurely born children: the EPIPAGE Study. Arch Pediatr Adolesc Med. 2007;161(11):1053–61.

    Article  PubMed  Google Scholar 

  139. Briscoe J, Gathercole SE, Marlow N. Short-term memory and language outcomes after extreme prematurity at birth. J Speech Lang Hear Res. 1998;41(3):654–66.

    PubMed  CAS  Google Scholar 

  140. Lawrence EJ, McGuire PK, Allin M, Walshe M, Giampietro V, Murray RM, et al. The very preterm brain in young adulthood: the neural correlates of verbal paired associate learning. J Pediatr. 2010;156(6):889–95.

    Article  PubMed  Google Scholar 

  141. McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 minute walk test for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):744–8.

    Article  PubMed  Google Scholar 

  142. van der Staay FJ, Steckler T. Behavioural phenotyping of mouse mutants. Behav Brain Res. 2001;125(1–2):3–12.

    Article  PubMed  Google Scholar 

  143. Arndt SS, Surjo D. Methods for the behavioural phenotyping of mouse mutants. How to keep the overview. Behav Brain Res. 2001;125(1–2):39–42.

    Article  PubMed  CAS  Google Scholar 

  144. Surjo D, Arndt SS. The Mutant Mouse Behaviour network, a medium to present and discuss methods for the behavioural phenotyping. Physiol Behav. 2001;73(5):691–4.

    Article  PubMed  CAS  Google Scholar 

  145. Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron. 2008;57(6):809–18.

    Article  PubMed  CAS  Google Scholar 

  146. Fox WM. Reflex-ontogeny and behavioural development of the mouse. Anim Behav. 1965;13(2):234–41.

    Article  PubMed  CAS  Google Scholar 

  147. Hammerschmidt K, Reisinger E, Westekemper K, Ehrenreich L, Strenzke N, Fischer J. Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neurosci. 2012;13:40.

    Article  PubMed  Google Scholar 

  148. Scattoni ML, Crawley J, Ricceri L. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev. 2009;33(4):508–15.

    Article  PubMed  Google Scholar 

  149. Blumberg MS, Sokoloff G. Do infant rats cry? Psychol Rev. 2001;108(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  150. Young DM, Schenk AK, Yang SB, Jan YN, Jan LY. Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proc Natl Acad Sci U S A. 2010;107(24):11074–9.

    Article  PubMed  CAS  Google Scholar 

  151. Bouslama M, Durand E, Chauviere L, Van den Bergh O, Gallego J. Olfactory classical conditioning in newborn mice. Behav Brain Res. 2005;161(1):102–6.

    Article  PubMed  Google Scholar 

  152. Wilson DA, Sullivan RM. Neurobiology of associative learning in the neonate: early olfactory learning. Behav Neural Biol. 1994;61(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  153. Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader–Willi syndromes. Compr Physiol. 2012;2:2255–79.

    Google Scholar 

  154. Bouslama M, Renaud J, Olivier P, Fontaine RH, Matrot B, Gressens P, et al. Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience. 2007;150(3):712–9.

    Article  PubMed  CAS  Google Scholar 

  155. Bouslama M, Chauviere L, Fontaine RH, Matrot B, Gressens P, Gallego J. Treatment-induced prevention of learning deficits in newborn mice with brain lesions. Neuroscience. 2006;141(2):795–801.

    Article  PubMed  CAS  Google Scholar 

  156. Spittle AJ, Boyd RN, Inder TE, Doyle LW. Predicting motor development in very preterm infants at 12 months’ corrected age: the role of qualitative magnetic resonance imaging and general movements assessments. Pediatrics. 2009;123(2):512–7.

    Article  PubMed  Google Scholar 

  157. Pham H, Vottier G, Pansiot J, Duong-Quy S, Bollen B, Dalous J, et al. Impact of inhaled nitric oxide on hyperoxia-induced white matter damage in neonatal rats. Pediatric Academic Societies Meeting; April 28–May 1; Boston 2012.

  158. Sullivan RM, Taborsky-Barba S, Mendoza R, Itano A, Leon M, Cotman CW, et al. Olfactory classical conditioning in neonates. Pediatrics. 1991;87(4):511–8.

    PubMed  CAS  Google Scholar 

  159. Bollen B, Matrot B, Ramanantsoa N, Van den Bergh O, D’Hooge R, Gallego J. Olfactory classical conditioning in neonatal mouse pups using thermal stimuli. Behav Brain Res. 2012;229(1):250–6.

    Article  PubMed  Google Scholar 

  160. Mandillo S, Tucci V, Holter SM, Meziane H, Banchaabouchi MA, Kallnik M, et al. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genom. 2008;34(3):243–55.

    Article  Google Scholar 

  161. Fuchs H, Gailus-Durner V, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, et al. Mouse phenotyping. Methods. 2011;53(2):120–35.

    Article  PubMed  CAS  Google Scholar 

  162. Stiles J, Reilly J, Paul B, Moses P. Cognitive development following early brain injury: evidence for neural adaptation. Trends Cogn Sci. 2005;9(3):136–43.

    Article  PubMed  Google Scholar 

  163. Luciana M, Lindeke L, Georgieff M, Mills M, Nelson CA. Neurobehavioral evidence for working-memory deficits in school-aged children with histories of prematurity. Dev Med Child Neurol. 1999;41(8):521–33.

    Article  PubMed  CAS  Google Scholar 

  164. Bates JH, Thompson-Figueroa J, Lundblad LK, Irvin CG. Unrestrained video-assisted plethysmography: a noninvasive method for assessment of lung mechanical function in small animals. J Appl Physiol. 2008;104(1):253–61.

    Article  PubMed  Google Scholar 

  165. Dehorter N, Michel FJ, Marissal T, Rotrou Y, Matrot B, Lopez C, et al. Onset of pup locomotion coincides with loss of NR2C/D-mediated cortico-striatal EPSCs and dampening of striatal network immature activity. Front Cell Neurosci. 2011;5:24.

    Article  PubMed  Google Scholar 

  166. Moy SS, Nadler JJ. Advances in behavioral genetics: mouse models of autism. Mol Psychiatry. 2008;13(1):4–26.

    Article  PubMed  CAS  Google Scholar 

  167. Pautassi RM, Nizhnikov ME, Truxell E, Varlinskaya EI, Spear NE. Ontogeny of ethanol intake in alcohol preferring (P) and alcohol nonpreferring (NP) rats. Dev Psychobiol. 2011;53(3):234–45.

    Article  PubMed  Google Scholar 

  168. Flory GS, Langley CM, Pfister JF, Alberts JR. Instrumental learning for a thermal reinforcer in 1-day-old rats. Dev Psychobiol. 1997;30(1):41–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ research is funded by the Wellcome Trust (program grant No. WT094823MA), Inserm, Université Paris 7, APHP (Contrat Hospitalier de Recherche Translationnelle, to PG), Fondation Leducq, Fondation Grace de Monaco, Fondation Roger de Spoelberch, PremUP, Legs Poix, AFM, and FRM. We are indebted to Sylvia Fortes for performing the Morris water maze tests.

Conflict of interest statement

Each of the authors declares that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobbi Fleiss.

Additional information

Nelina Ramanantsoa and Bobbi Fleiss joint first authorship.Pierre Gressens and Jorge Gallego joint last authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanantsoa, N., Fleiss, B., Bouslama, M. et al. Bench to Cribside: the Path for Developing a Neuroprotectant. Transl. Stroke Res. 4, 258–277 (2013). https://doi.org/10.1007/s12975-012-0233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0233-2

Keywords

Navigation