Skip to main content
Log in

In vivo Toxicity Assessment of Antimicrobial Peptides (AMPs LR14) Derived from Lactobacillus plantarum Strain LR/14 in Drosophila melanogaster

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactic acid bacteria are known to produce antimicrobial peptides (AMPs) such as bacteriocins which can be employed to control pathogens and food spoilage microorganisms. However, their possible role as toxic agents against a eukaryotic system still remains unexplored. The present study deals with the in vivo evaluation of acute toxic effect of AMPs LR14, a mixture of AMPs isolated from Lactobacillus plantarum LR/14 on Drosophila melanogaster. The fly was used as a model system to measure the extent of toxicity of these peptides. The results showed that concentrations below 10 mg/ml are not significantly effective. When exposed to 10 mg/ml of AMPs LR14, acute toxic effect and a significant delay in the developmental cycle of the fly could be observed. Also, the weight and size of the flies were significantly reduced upon ingestion of these peptides. Higher concentrations (beyond 15 mg/ml) exerted a strong larvicidal effect. Detailed analysis on larval tissues and adult germ cells of the insect revealed deformity in cellular architecture, DNA fragmentation, and premature apoptosis, confirming that the peptides have a dose-dependent toxic property. Our studies provide the first information on the role of AMPs LR14 as an insecticidal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akmoutsou P, Mademtzoglou D, Nakou I, Onoufriadis A, Papadopoulou X, Kounatidis I, Frantzios G, Papadakis G, Vasiliadis K, Papadopoulos NT, Mavragani-Tsipidou P (2011) Evaluation of toxicity and genotoxic effects of spinosad and deltamethrin in Drosophila melanogaster and Bactrocera oleae. Pest Manag Sci 67:1534–1540

    Article  CAS  Google Scholar 

  2. Belfiore C, Castellano P, Vignolo G (2007) Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiol 24:223–229

    Article  CAS  Google Scholar 

  3. Egea G, Lazaro-Dieguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18:168–178

    Article  CAS  Google Scholar 

  4. Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  Google Scholar 

  5. Ghosh N, Kumar M, Tiwari SK, Srivastava S (2008) Probiotic potential of two environmental isolates of lactic acid bacteria, Lactobacillus plantarum LR/14 and Enterococcus faecium LR/6. Int J Probiotics Prebiotics 3:199–206

    Google Scholar 

  6. Graf U, Schaik NV, Wurgler FE (1992) Drosophila genetics—a practical course. Springer, Berlin

    Google Scholar 

  7. Gupta SC, Siddique HR, Mathur N, Mishra RK, Mitra K, Saxena DK, Chowdhuri DK (2008) Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70 kDa heat shock protein as a marker of cellular damage. Toxicology 238:1–14

    Article  Google Scholar 

  8. Ianella P, Azeredo-Oliveira MTV, Itoyama MM (2008) Programmed cell death in salivary glands of Drosophila arizonae and Drosophila mulleri. Genet Mol Res 7:476–486

    Article  CAS  Google Scholar 

  9. Karatas A, Bahceci Z (2009) Effect of cypermethrin on some developmental stages of Drosophila melanogaster. Bull Environ Contam Toxicol 82:738–742

    Article  CAS  Google Scholar 

  10. Key CS, Reaves D, Turner F, Bang JJ (2011) Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas J Biol 1:52–61

    Article  Google Scholar 

  11. Lee SB, Kim S, Lee J, Park J, Lee G, Kim Y, Kim J, Chung J (2007) ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep 8:360–365

    Article  CAS  Google Scholar 

  12. Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47:395–422

    Article  Google Scholar 

  13. Leventis PA, Da Sylva TR, Rajwans N, Wasiak S, McPherson PS, Boulianne GL (2011) Liquid facets-related (lqfR) is required for egg chamber morphogenesis during Drosophila oogenesis. PLoS ONE 6:e25466

    Article  CAS  Google Scholar 

  14. Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43:6357–6363

    Article  CAS  Google Scholar 

  15. Lu R, Fasano S, Madayiputhiya N, Morin NP, Nataro J, Fasano A (2009) Isolation, identification, and characterization of small bioactive peptides from Lactobacillus GG conditional media that exert both anti-Gram-negative and Gram-positive bactericidal activity. J Pediatr Gastroenterol Nutr 49:23–30

    Article  CAS  Google Scholar 

  16. Maher S, McClean S (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71:1289–1298

    Article  CAS  Google Scholar 

  17. McCall K (2004) Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14

    Article  CAS  Google Scholar 

  18. Mukhopadhyay I, Nazir A, Saxena DK, Chowdhuri DK (2002) Toxicity of cypermethrin: hsp70 as a biomarker of response in transgenic Drosophila. Biomarkers 7:501–510

    Article  CAS  Google Scholar 

  19. Nadda G, Saxena PN, Srivastava G (2005) Effects of beta-cyfluthrin on white and sepia mutants of Drosophila melanogaster. J Environ Biol 26:363–367

    CAS  Google Scholar 

  20. Olcott MH, Henkels MD, Rosen KL, Walker FL, Sneh B, Loper JE, Taylor BJ (2010) Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS ONE 5:e12504

    Article  Google Scholar 

  21. O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    Article  Google Scholar 

  22. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:521–542

    Article  CAS  Google Scholar 

  23. Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979

    Article  CAS  Google Scholar 

  24. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    Article  CAS  Google Scholar 

  25. Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, Falqui A, Bertoni G, Cingolani R (2011) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4:405–413

    Article  CAS  Google Scholar 

  26. Schneider D (2004) Using Drosophila as a model insect. Nat Rev 1:218–226

    Article  Google Scholar 

  27. Tiwari SK, Srivastava S (2008) Characterization of a bacteriocin from Lactobacillus plantarum strain LR/14. Food Biotechnol 22:247–261

    Article  CAS  Google Scholar 

  28. Tiwari SK, Srivastava S (2008) Purification and characterization of plantaricin LR14: a novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl Microbiol Biotechnol 79:759–767

    Article  CAS  Google Scholar 

  29. Tsukamoto T, Ishikawa Y, Miyazawa M (2005) Larvicidal and adulticidal activity of alkylphthalide derivatives from rhizome of Cnidium officinale against Drosophila melanogaster. J Agric Food Chem 53:5549–5553

    Article  CAS  Google Scholar 

  30. Vaucher RA, da Motta A, Brandelli A, Revol-Junelles A-M (2010) Evaluation of the in vitro cytotoxicity of the antimicrobial peptide P34. Cell Biol Int 34:317–323

    Article  CAS  Google Scholar 

  31. Ziegler U, Groscurth P (2004) Morphological features of cell death. News Physiol Sci 19:124–128

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology (DBT) and University Grants Commission (UGC) Scholarship to RG. The authors acknowledge the funds provided by UGC-SAP and DST-FIST to the Department of Genetics. Authors also acknowledge the support of Mr. Manish Kumar, CIF, UDSC, for confocal microscopy.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R., Sarkar, S. & Srivastava, S. In vivo Toxicity Assessment of Antimicrobial Peptides (AMPs LR14) Derived from Lactobacillus plantarum Strain LR/14 in Drosophila melanogaster . Probiotics & Antimicro. Prot. 6, 59–67 (2014). https://doi.org/10.1007/s12602-013-9154-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9154-y

Keywords

Navigation