Skip to main content
Log in

Unsteady mixed convection past a circular cylinder using ghost fluid cascaded lattice Boltzmann method (GF-CLBM)

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents the transient hydrodynamic and heat transfer behaviour of a cross-flow over a heated circular cylinder under the influence of thermal buoyancy. The Reynolds number chosen for the present study is fixed as 100, and the Richardson number is varied from 0.1 to 2. A relatively new ghost fluid thermal lattice Boltzmann method (GF-TLBM) is used as the numerical solver. Cascaded collision model is incorporated into the code and validated successfully. As the Richardson number increases from 0.1 to 2, the buoyancy forces become dominant and tend to tilt the vortex shedding towards the vertical direction. The drag and lift coefficients as well as the Strouhal number and the average Nusselt number show an increasing trend with the increase in the Richardson number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

f :

Single-particle distribution function for density

g :

Single-particle distribution function for internal energy

ω :

Relaxation constant for collision

Ri:

Richardson number, \(\frac{Gr}{{\text{Re}^{2} }}\)

ρ :

Fluid density

T :

Time period of vortex shedding

τ :

Relaxation time for collision

θ :

Non-dimensional temperature

References

  1. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 299 pp. Oxford University press, Oxford (2001)

    MATH  Google Scholar 

  2. Tiwari, A., Vanka, S.P.: A ghost fluid Lattice Boltzmann method for complex geometries. Int. J. Numer. Methods Fluids p. n/a-n/a (2011)

  3. Geier, M., Greiner, A., Korvink, J.G.: Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 73(6), 1–10 (2006)

    Article  Google Scholar 

  4. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  Google Scholar 

  5. Biswas, G., Laschefski, H., Mitra, N.K., Fiebig, M.: Numerical investigation of mixed convection heat transfer in a horizontal channel with built-in square cylinder. Numer. Heat Transfer Part A 18, 173–188 (1990)

    Article  Google Scholar 

  6. Singh, S., Biswas, G., Mukhopadhyay, A.: Effect of thermal buoyancy on the flow through a vertical channel with a built-in circular cylinder. Numer. Heat Transf. Part A 35 Appl. vol. 34, no. 7, pp. 769–789

  7. Patnaik, B.S.V., Narayana, P.A.A., Seetharamu, K.N.: Finite element simulation of transient laminar flow past a circular cylinder and two cylinders in tandem—influence of buoyancy. Int. J. Numer. Methods Heat Fluid Flow 10, 560–580 (2000)

    Article  Google Scholar 

  8. Biswas, G., Sarkar, S.: Effect of thermal buoyancy on vortex shedding past a circular cylinder in cross-flow at low Reynolds numbers. Int. J. Heat Mass Transf. 52(7–8), 1897–1912 (2009)

    Article  Google Scholar 

  9. Varma, Nitish, Dulhani, Jay P., Dalal, Amaresh, Sarkar, Sandip, Ganguly, Suvankar: Effect of channel confinement on mixed convective flow past an equilateral triangular cylinder. J. Heat Transfer 137(12), 121013 (2015)

    Article  Google Scholar 

  10. Grucelski, A., Pozorski, J.: Lattice Boltzmann simulations of heat transfer in flow past a cylinder and in simple porous media. Int. J. Heat Mass Transf. 86, 139–148 (2015)

    Article  Google Scholar 

  11. Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. EPL Europhys. Lett. 17, 479–484 (1992)

    Article  Google Scholar 

  12. Geier, M.: Ab initio derivation of the cascaded lattice Boltzmann automaton. Ph.D. Thesis, University of Freiburg, Freiburg, Germany (2006)

  13. Mahir, N., Altac, Z.: Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int. J. Heat Fluid Flow 29(5), 1309–1318 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampath Kumar Chinige.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravindra, V., Chinige, S.K., Anupindi, K. et al. Unsteady mixed convection past a circular cylinder using ghost fluid cascaded lattice Boltzmann method (GF-CLBM). Int J Adv Eng Sci Appl Math 10, 281–290 (2018). https://doi.org/10.1007/s12572-018-0232-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-018-0232-y

Keywords

Navigation