Skip to main content
Log in

Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Le, W. S. Ji, and J. G. Kim, Corros. Sci. 50, 1195 (2008).

    Article  Google Scholar 

  2. S.-A. Park, J.-G. Kim, B.-H. Lee, and J.-B. Yoon, Korean J. Met. Mater. 52, 837 (2014).

    Google Scholar 

  3. S. A. Park, S. H. Lee, and J. G. Kim, Met. Mater. Int. 18, 957 (2012).

    Article  Google Scholar 

  4. M. J. Kim, S. H. Lee, J. G. Kim, and J. B. Yoon, Corrosion 66, 1250051 (2010).

    Google Scholar 

  5. S. A. Park, W. S. Ji, and J. G. Kim, Int. J. Electrochem. Sci. 8, 7498 (2013).

    Google Scholar 

  6. S. A. Park, J. G. Kim, and J. B. Yoon, Corrosion 70, 196 (2014).

    Article  Google Scholar 

  7. J. Okamoto, A. Usami, A. Soeno, H. Mimura, and T. Ishitsuka, Nippon Steel Tech. Rep. 90, 98 (2004).

    Google Scholar 

  8. J. Okamoto, A. Usami, and H. Mimura, Nippon Steel Tech. Rep. 87, 46 (2003).

    Google Scholar 

  9. A. Usami, M. Okushima, S. Sakamoto, S. Nishimura, T. Kusunoki, and K. Kojima, Nippon Steel Tech. Rep. 90, 25 (2004).

    Google Scholar 

  10. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., pp.31–148, Prentice Hall, New Jersey (1996).

    Google Scholar 

  11. T. V. Shibaeva, V. K. Laurinavichyute, G. A. Tsirlina, A. M. Arsenkin, and K. V. Grigorovich, Corros. Sci. 80, 299 (2014).

    Article  Google Scholar 

  12. B. Lin, R. Hu, C. Ye, Y. Li, and C. Lin, Electrochim. Acta 55, 6542 (2010).

    Article  Google Scholar 

  13. W. S. Li and J. L. Luo, Corros. Sci. 44, 1695 (2002).

    Article  Google Scholar 

  14. B. Jegdic, D. M. Drazic, and J. P. Popic, Corros. Sci. 50, 1235 (2008).

    Article  Google Scholar 

  15. L. Vracar and D. M. Drazic, J. Electrochem. Soc. 110, 703 (1963).

    Article  Google Scholar 

  16. V. J. Drazic, D. M. Drazic, and V. Jevtic, J. Serb. Chem. Soc. 52, 711 (1987).

    Google Scholar 

  17. ASTM G 1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, pp.16–23, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA (2002).

    Google Scholar 

  18. ASTM G 31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, pp.101–108, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA (2002).

    Google Scholar 

  19. M. I. Barrena, J. M. Gómez de Salazar, J. M. Vázquez, I. García-Cano, and J. M. Guilemany, Met. Mater. Int. 20, 613 (2014).

    Article  Google Scholar 

  20. N. D. Nam, D. Y. Lee, J. G. Kim, and N. J. Park, Met. Mater. Int. 20, 469 (2014).

    Article  Google Scholar 

  21. S. H. Lee, W. K. Oh, and J. G. Kim, Prog. Org. Coat. 76, 778 (2013).

    Article  Google Scholar 

  22. M. Gojic, Corros. Sci. 43, 919 (2013).

    Article  Google Scholar 

  23. B. G. Ateya, B. E. El-Anadouli, and M. El-Nizmay, Corros. Sci. 24, 509 (1984).

    Article  Google Scholar 

  24. B. Dus and Z. Szklarska-Smialowska, Corrosion 25, 69 (1969).

    Article  Google Scholar 

  25. A. Frignani, M. Tassinari, and G. Trabanelli, Electrochim. Acta 34, 1259 (1989).

    Article  Google Scholar 

  26. G. A. Zhang and Y. F. Cheng, Corros. Sci. 51, 87 (2009).

    Article  Google Scholar 

  27. Macdonald, J. Electrochem. Soc. 125, 2062 (1978).

    Article  Google Scholar 

  28. X. Guo, H. Imaizumi, and K. Katoh, J. Electroanal. Chem. 383, 99 (1995).

    Article  Google Scholar 

  29. K. H. Kim, S. H. Lee, N. D. Nam, and J. G. Kim, Corros. Sci. 53, 3576 (2011).

    Article  Google Scholar 

  30. J. H. Hong, S. H. Lee, J. G. Kim, and J. B. Yoon, Corros. Sci. 32, 174 (2012).

    Article  Google Scholar 

  31. F. Farelas, M. Galicia, B. Brown, S. Nesic, and H. Castaneda, Corros. Sci. 52, 509 (2010).

    Article  Google Scholar 

  32. G. Moretti, F. Guidi, and G. Grion, Corros. Sci. 46, 387 (2004).

    Article  Google Scholar 

  33. Marcel Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, pp.307–392, NACE, Houston (1974).

    Google Scholar 

  34. W. P. Dow and H. S. Huang, J. Electrochem. Soc. 152, C67 (2005).

  35. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, J. Electrochem. Soc. 152, C77 (2005).

  36. D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, J. Electroanal. Chem. 532, 353 (2002).

    Article  Google Scholar 

  37. D. P. Barkey and F. Oberholtzer, Q. Wu, J. Electrochem. Soc. 145, 590 (1998).

    Article  Google Scholar 

  38. M. Tan and J. N. Harb, J. Electrochem. Soc. 150, C420 (2003).

  39. D. Stoychev and C. Tsvetanov, J. Appl. Electrochem. 26, 741 (1996).

    Article  Google Scholar 

  40. T. Kekeri and M. Isshiki, J. Appl. Electrochem. 27, 982 (1997).

    Article  Google Scholar 

  41. H. P. Lee, K. Nobe, and A. J. Pearlstein, J. Electrochem. Soc. 132, 1031 (1985).

    Article  Google Scholar 

  42. A. J. Pearlstein, H. P. Lee, and K. Nobe, J. Electrochem. Soc. 132, 2159 (1985).

    Article  Google Scholar 

  43. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, and D. R. Kelly, J. Electrochem. Soc. 147, 4524 (2000).

    Article  Google Scholar 

  44. H. K. Lin and X. Wu, Metall. Mater. Trans. B 27B, 157 (1996).

    Article  Google Scholar 

  45. H. K. Lin, X. Wu, and P. D. Rao, J. Appl. Electrochem. 24, 758 (1994).

    Article  Google Scholar 

  46. Y. S. Choi, J. J. Shim, and J. G. Kim, J. Alloys Compd. 391, 162 (2005).

    Article  Google Scholar 

  47. A. L. Pitman, M. Pourbaix, and N. de Zoubov, J. Electrochem. Soc. 104, 594 (1957).

    Article  Google Scholar 

  48. N. D. Nam and J. G. Kim, Corros. Sci. 52, 14 (2010).

    Article  Google Scholar 

  49. R. F. North and M. J. Pryor, Corros. Sci. 9, 509 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SA., Kim, SH., Yoo, YH. et al. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution. Met. Mater. Int. 21, 470–478 (2015). https://doi.org/10.1007/s12540-015-4421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4421-y

Keywords

Navigation