Skip to main content
Log in

Effect of 2-mercaptobenzothiazole on the corrosion inhibition of Cu–10Ni alloy in 3 wt% NaCl solution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

2-Mercaptobenzothiazole (MBT), a heterocyclic compound, is a remarkable corrosion inhibitor for pure Cu. Among different copper-based alloys, Cu–Ni alloys are used in a wide range of applications in industries that are exposed to the corrosive environment and making them prone to corrosion. In the current study, the effect of 2-Mercaptobenzothiazole (MBT) concentration on the corrosion inhibition of Cu–10Ni alloy in 3 wt% NaCl solution was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and weight loss methods. SEM and XPS were also used for surface characterization. Results of different methods were in good agreement and showed that MBT enhances the corrosion resistance of the alloy at concentrations of 60 and 80 ppm. At the concentration of 40 ppm, MBT deteriorates the corrosion resistance. Maximum inhibition of about 92% was achieved for the concentration of 80 ppm. MBT acts as a mixed-type inhibitor, and the N atom and exocyclic S atom of the MBT are involved in the molecule adsorption. The role of MBT in corrosion inhibition was attributed to the role of adsorbed inhibitor film, which hinders the Ni Dealloying.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chandra K, Mahanti A, Singh AP et al (2019) Microbiologically influenced corrosion of 70/30 cupronickel tubes of a heat-exchanger. Eng Fail Anal 105:1328–1339. https://doi.org/10.1016/j.engfailanal.2019.08.005

    Article  CAS  Google Scholar 

  2. Dadić Z, Gudić S, Vrsalović L et al (2019) Different corrosion behaviour of CuNi10Fe1Mn alloy condenser tubes in seawater. Mech Technol Struct Mater 2019:25–31

    Google Scholar 

  3. Elragei O, Elshawesh F, Ezuber HM (2010) Corrosion failure 90/10 cupronickel tubes in a desalination plant. Desalin Water Treat 21:17–22. https://doi.org/10.5004/dwt.2010.1156

    Article  CAS  Google Scholar 

  4. Ahmad Z, Aleem BJA (1994) The corrosion performance of 90–10 cupronickel in Arabian Gulf water containing ammonia. Desalination 95:307–323. https://doi.org/10.1016/0011-9164(94)00067-0

    Article  CAS  Google Scholar 

  5. Chandra K, Kain V, Dey GK et al (2010) Failure analysis of cupronickel evaporator tubes of a chilling plant. Eng Fail Anal 17:587–593. https://doi.org/10.1016/j.engfailanal.2009.10.014

    Article  CAS  Google Scholar 

  6. Agarwal DC (2002) Effect of ammoniacal sea water on material properties of copper-nickel alloy. Br Corros J 37:105–113. https://doi.org/10.1179/000705902225004329

    Article  CAS  Google Scholar 

  7. Varea A, Pellicer E, Pané S et al (2012) Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. Int J Electrochem Sci 7:1288–1302

    CAS  Google Scholar 

  8. Agarwal DC, Bapat AM (2009) Effect of ammonia and sulphide environment on 90/10 and 70/30 cupronickel alloy. J Fail Anal Prev 9:444–460. https://doi.org/10.1007/s11668-009-9281-7

    Article  Google Scholar 

  9. Hopkinson BE (1964) Copper–nickel alloys for feed-water heater service. Corrosion 20:80t–88t. https://doi.org/10.5006/0010-9312-20.3.80t

    Article  Google Scholar 

  10. Milošev I, Metikoš-Huković M (1997) The behaviour of Cu-xNi (x = 10 to 40 wt%) alloys in alkaline solutions containing chloride ions. Electrochim Acta 42:1537–1548. https://doi.org/10.1016/S0013-4686(96)00315-5

    Article  Google Scholar 

  11. Kamkin AN, Davydov AD, Zhou G-D, Marichev VA (1999) Anodic oxide films on copper-nickel alloys. Russ J Electrochem 35:531–539

    CAS  Google Scholar 

  12. Sharma SB, Maurice V, Klein LH, Marcus P (2020) Local inhibition by 2-mercaptobenzothiazole of early stage intergranular corrosion of copper. J Electrochem Soc 167:161504. https://doi.org/10.1149/1945-7111/abcc36

    Article  CAS  Google Scholar 

  13. Muñoz AI, Antón JG, Guiñón JL, Pérez Herranz V (2004) Comparison of inorganic inhibitors of copper, nickel and copper-nickels in aqueous lithium bromide solution. Electrochim Acta 50:957–966. https://doi.org/10.1016/j.electacta.2004.07.048

    Article  CAS  Google Scholar 

  14. Gonçalves RS, Azambuja DS, Serpa Lucho AM (2002) Electrochemical studies of propargyl alcohol as corrosion inhibitor for nickel, copper, and copper/nickel (55/45) alloy. Corros Sci 44:467–479. https://doi.org/10.1016/S0010-938X(01)00069-5

    Article  Google Scholar 

  15. Khadom AA, Yaro AS, Musa AY et al (2012) Corrosion inhibition of copper-nickel alloy: experimental and theoretical studies. J Korean Chem Soc 56:406–415. https://doi.org/10.5012/jkcs.2012.56.4.406

    Article  CAS  Google Scholar 

  16. Hu X (2015) Study on inhibitors of copper and copper–nickel alloy in LiBr solution. Light Metals 2015:379–385. https://doi.org/10.1002/9781119093435.ch63

    Article  Google Scholar 

  17. Hao C, Yin RH, Wan ZY et al (2008) Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30. Corros Sci 50:3527–3533. https://doi.org/10.1016/j.corsci.2008.09.016

    Article  CAS  Google Scholar 

  18. Kristan Mioč E, Hajdari Gretić Z, Otmačić Ćurković H (2018) Modification of cupronickel alloy surface with octadecylphosphonic acid self-assembled films for improved corrosion resistance. Corros Sci 134:189–198. https://doi.org/10.1016/j.corsci.2018.02.021

    Article  CAS  Google Scholar 

  19. Appa Rao BV, Chaitanya Kumar K, Boyapati VAR, Kanukula CK (2013) Corrosion inhibition of Cu–Ni (90/10) alloy in seawater and sulphide-polluted seawater environments by 1,2,3-benzotriazole. ISRN Corros 2013:1–22. https://doi.org/10.1155/2013/703929

    Article  CAS  Google Scholar 

  20. Obot IB, Meroufel A, Onyeachu IB et al (2019) Corrosion inhibitors for acid cleaning of desalination heat exchangers: progress, challenges and future perspectives. J Mol Liq 296:111760. https://doi.org/10.1016/j.molliq.2019.111760

    Article  CAS  Google Scholar 

  21. Khadom AA, Yaro AS, Kadhum AAH (2010) Adsorption mechanism of benzotriazole for corrosion inhibition of copper-nickel alloy in hydrochloric acid. J Chil Chem Soc 55:150–152. https://doi.org/10.4067/S0717-97072010000100035

    Article  CAS  Google Scholar 

  22. Jiang B, Jiang SL, Liu X et al (2015) Corrosion inhibition performance of triazole derivatives on copper–nickel alloy in 3.5 wt.% NaCl solution. J Mater Eng Perform 24:4797–4808. https://doi.org/10.1007/s11665-015-1759-8

    Article  CAS  Google Scholar 

  23. Khadom AA (2014) Effect of temperature on corrosion inhibition of copper–nickel alloy by tetraethylenepentamine under flow conditions. J Chil Chem Soc 59:2545–2549. https://doi.org/10.4067/S0717-97072014000300004

    Article  Google Scholar 

  24. Khadom AA, Yaro AS (2011) Modeling of corrosion inhibition of copper-nickel alloy in hydrochloric acid by benzotriazole. Russ J Phys Chem A 85:2005–2012. https://doi.org/10.1134/S0036024411110148

    Article  CAS  Google Scholar 

  25. Khadom AA, Yaro AS, Kadum AAH (2010) Corrosion inhibition by naphthylamine and phenylenediamine for the corrosion of copper-nickel alloy in hydrochloric acid. J Taiwan Inst Chem Eng 41:122–125. https://doi.org/10.1016/j.jtice.2009.08.001

    Article  CAS  Google Scholar 

  26. Maciel JM, Jaimes RFVV, Corio P et al (2008) The characterisation of the protective film formed by benzotriazole on the 90/10 copper-nickel alloy surface in H2SO4 media. Corros Sci 50:879–886. https://doi.org/10.1016/j.corsci.2007.10.011

    Article  CAS  Google Scholar 

  27. Saifi H, Bernard MC, Joiret S et al (2010) Corrosion inhibitive action of cysteine on Cu-30Ni alloy in aerated 0.5 M H2SO4. Mater Chem Phys 120:661–669. https://doi.org/10.1016/j.matchemphys.2009.12.011

    Article  CAS  Google Scholar 

  28. Martinez S, Metikoš-Huković M (2006) The inhibition of copper-nickel alloy corrosion under controlled hydrodynamic condition in seawater. J Appl Electrochem 36:1311–1315. https://doi.org/10.1007/s10800-005-9101-z

    Article  CAS  Google Scholar 

  29. Omar IH, Zucchi F, Trabanelli G (1986) Schiff bases as corrosion inhibitors of copper and its alloys in acid media. Surf Coat Technol 29:141–151. https://doi.org/10.1016/0257-8972(86)90025-3

    Article  CAS  Google Scholar 

  30. Trachli B, Keddam M, Takenouti H, Srhiri A (2002) Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5 M NaCl. Corros Sci 44:997–1008. https://doi.org/10.1016/S0010-938X(01)00124-X

    Article  CAS  Google Scholar 

  31. Otmačić H, Stupnišek-Lisac E (2003) Copper corrosion inhibitors in near neutral media. Electrochim Acta 48:985–991. https://doi.org/10.1016/S0013-4686(02)00811-3

    Article  CAS  Google Scholar 

  32. El Issami S (2002) Inhibition de la corrosion du cuivre en milieu HCl 0,5 M par les composes organiques de type triazoleInhibition of copper corrosion in HCl 0.5 M medium by some triazolic compounds. Ann Chim Sci Matér 27:63–72. https://doi.org/10.1016/S0151-9107(02)80019-8

    Article  Google Scholar 

  33. Hammouda N, Chadli H, Guillemot G, Belmokre K (2011) The corrosion protection behaviour of zinc rich epoxy paint in 3% NaCl solution. Adv Chem Eng Sci 01:51–60. https://doi.org/10.4236/aces.2011.12009

    Article  CAS  Google Scholar 

  34. Huynh N, Bottle S, Notoya T et al (2002) Studies on alkyl esters of carboxybenzotriazole as inhibitors for copper corrosion. Corros Sci 44:1257–1276. https://doi.org/10.1016/S0010-938X(01)00109-3

    Article  CAS  Google Scholar 

  35. Antonijevic MM, Petrovic MB, Petrović MB, Mihajlović MMA (2008) copper corrosion inhibitors: a review. Int J Electrochem Sci 3:1–28. https://doi.org/10.1016/j.ijengsci.2004.12.001

    Article  CAS  Google Scholar 

  36. Sutter EMM, Ammeloot F, Pouet MJ et al (1999) Heterocyclic compounds used as corrosion inhibitors: correlation between 13C and 1H NMR spectroscopy and inhibition efficiency. Corros Sci 41:105–115. https://doi.org/10.1016/S0010-938X(98)00099-7

    Article  CAS  Google Scholar 

  37. Benmessaoud M, Es-salah K, Hajjaji N et al (2007) Inhibiting effect of 2-mercaptobenzimidazole on the corrosion of Cu–30Ni alloy in aerated 3% NaCl in presence of ammonia. Corros Sci 49:3880–3888. https://doi.org/10.1016/j.corsci.2007.03.017

    Article  CAS  Google Scholar 

  38. Allam NK, Ashour EA, Hegazy HS et al (2005) Effects of benzotriazole on the corrosion of Cu10Ni alloy in sulfide-polluted salt water. Corros Sci 47:2280–2292. https://doi.org/10.1016/j.corsci.2004.09.014

    Article  CAS  Google Scholar 

  39. Babić R, Metikoš-Huković M, Lončar M (1999) Impedance and photoelectrochemical study of surface layers on Cu and Cu–10Ni in acetate solution containing benzotriazole. Electrochim Acta 44:2413–2421. https://doi.org/10.1016/S0013-4686(98)00367-3

    Article  Google Scholar 

  40. Badawy WA, Ismail KM, Fathi AM (2006) Corrosion control of Cu–Ni alloys in neutral chloride solutions by amino acids. Electrochim Acta 51:4182–4189. https://doi.org/10.1016/j.electacta.2005.11.037

    Article  CAS  Google Scholar 

  41. Badawy WA, Ismail KM, Fathi AM (2005) Environmentally safe corrosion inhibition of the Cu–Ni alloys in acidic sulfate solutions. J Appl Electrochem 35:879–888. https://doi.org/10.1007/s10800-005-4741-6

    Article  CAS  Google Scholar 

  42. Kovačević N, Kokalj A (2013) The relation between adsorption bonding and corrosion inhibition of azole molecules on copper. Corros Sci 73:7–17. https://doi.org/10.1016/j.corsci.2013.03.016

    Article  CAS  Google Scholar 

  43. Khiati Z, Othman A, Sanchez-Moreno M et al (2011) Corrosion inhibition of copper in neutral chloride media by a novel derivative of 1,2,4-triazole. Corros Sci 53:3092–3099. https://doi.org/10.1016/j.corsci.2011.05.042

    Article  CAS  Google Scholar 

  44. Hu L, Zhang S, Li W, Hou B (2010) Electrochemical and thermodynamic investigation of diniconazole and triadimefon as corrosion inhibitors for copper in synthetic seawater. Corros Sci 52:2891–2896. https://doi.org/10.1016/j.corsci.2010.04.038

    Article  CAS  Google Scholar 

  45. Otmacic Curkovic H, Stupnisek-Lisac E, Takenouti H (2009) Electrochemical quartz crystal microbalance and electrochemical impedance spectroscopy study of copper corrosion inhibition by imidazoles. Corros Sci 51:2342–2348. https://doi.org/10.1016/j.corsci.2009.06.018

    Article  CAS  Google Scholar 

  46. Elbakri M, Touir R, EbnTouhami M et al (2008) Electrosynthesis of adherent poly(3-amino-1,2,4-triazole) films on brass prepared in nonaqueous solvents. Corros Sci 50:1538–1545. https://doi.org/10.1016/j.corsci.2008.02.014

    Article  CAS  Google Scholar 

  47. Wu X, Wiame F, Maurice V, Marcus P (2020) Moiré structure of the 2-mercaptobenzothiazole corrosion inhibitor adsorbed on a (111)-oriented copper surface. J Phys Chem C 124:15995–16001. https://doi.org/10.1021/acs.jpcc.0c04083

    Article  CAS  Google Scholar 

  48. Chen YH, Erbe A (2018) The multiple roles of an organic corrosion inhibitor on copper investigated by a combination of electrochemistry-coupled optical in situ spectroscopies. Corros Sci 145:232–238. https://doi.org/10.1016/j.corsci.2018.09.018

    Article  CAS  Google Scholar 

  49. Faltermeier RB (1995) The evaluation of corrosion inhibitors for application to copper and copper alloy archaeological artefacts by, 1–332

  50. Zhang H, Xiong S (2018) A review on experimental studies of corrosion inhibitor adsorption on copper surface. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/439/4/042001

    Article  Google Scholar 

  51. Naumkin AV, Kraut-Vass A, Gaarenstroom SW (2003) NIST standard reference database 20, version 4.1

  52. Finšgar M, Fassbender S, Nicolini F, Milošev I (2009) Polyethyleneimine as a corrosion inhibitor for ASTM 420 stainless steel in near-neutral saline media. Corros Sci 51:525–533. https://doi.org/10.1016/j.corsci.2008.12.006

    Article  CAS  Google Scholar 

  53. Kartsonakis IA, Stamatogianni P, Karaxi EK, Charitidis CA (2019) Comparative study on the corrosion inhibitive effect of 2-mecraptobenzothiazole and Na2HPO4 on industrial conveying Api 5l x42 pipeline steel. Appl Sci 10:290. https://doi.org/10.3390/app10010290

    Article  CAS  Google Scholar 

  54. Zhang Z, Wang Q, Wang X, Gao L (2017) The influence of crystal faces on corrosion behavior of copper surface: first-principle and experiment study. Appl Surf Sci 396:746–753. https://doi.org/10.1016/j.apsusc.2016.11.020

    Article  CAS  Google Scholar 

  55. Vernack E, Costa D, Tingaut P, Marcus P (2020) DFT studies of 2-mercaptobenzothiazole and 2-mercaptobenzimidazole as corrosion inhibitors for copper. Corros Sci 174:108840. https://doi.org/10.1016/j.corsci.2020.108840

    Article  CAS  Google Scholar 

  56. Sherif EM, Park S-M (2005) Inhibition of Copper Corrosion in 3.0% NaCl Solution by N-Phenyl-1,4-phenylenediamine. J Electrochem Soc 152:428. https://doi.org/10.1149/1.2018254

    Article  CAS  Google Scholar 

  57. Badawy WA, Ismail KM, Fathi AM (2005) Effect of Ni content on the corrosion behavior of Cu–Ni alloys in neutral chloride solutions. Electrochim Acta 50:3603–3608. https://doi.org/10.1016/j.electacta.2004.12.030

    Article  CAS  Google Scholar 

  58. Dhar HP, White RE, Burnell G et al (1985) Corrosion of Cu and Cu–Ni alloys in 0. 5M NaCl and in synthetic seawater. Corrosion 41:317–323. https://doi.org/10.5006/1.3582011

    Article  CAS  Google Scholar 

  59. Blundy RG, Pryor MJ (1972) The potential dependence of reaction product composition on copper-nickel alloys. Corros Sci 12:65–75. https://doi.org/10.1016/S0010-938X(72)90567-7

    Article  CAS  Google Scholar 

  60. Khaled KF (2011) Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements. Mater Chem Phys 125:427–433. https://doi.org/10.1016/j.matchemphys.2010.10.037

    Article  CAS  Google Scholar 

  61. Kabasakaloğlu M, Kıyak T, Şendil O, Asan A (2002) Electrochemical behavior of brass in 0.1 M NaCl. Appl Surf Sci 193:167–174. https://doi.org/10.1016/S0169-4332(02)00258-1

    Article  Google Scholar 

  62. Finšgar M, Kek Merl D (2014) An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution. Corros Sci 83:164–175. https://doi.org/10.1016/j.corsci.2014.02.016

    Article  CAS  Google Scholar 

  63. Levi M (2001) Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V2O5 electrodes. Solid State Ionics 143:309–318. https://doi.org/10.1016/S0167-2738(01)00819-0

    Article  CAS  Google Scholar 

  64. Kim C-H, Pyun S-I, Kim J-H (2003) An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim Acta 48:3455–3463. https://doi.org/10.1016/S0013-4686(03)00464-X

    Article  CAS  Google Scholar 

  65. Jorcin J-B, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128

    Article  CAS  Google Scholar 

  66. Lukács Z (1999) Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits. J Electroanal Chem 464:68–75. https://doi.org/10.1016/S0022-0728(98)00471-9

    Article  Google Scholar 

  67. Kek-Merl D, Lappalainen J, Tuller HL (2006) Electrical properties of nanocrystalline CeO[sub 2] thin films deposited by in situ pulsed laser deposition. J Electrochem Soc 153:J15. https://doi.org/10.1149/1.2165778

    Article  CAS  Google Scholar 

  68. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  69. Finšgar M, Merl DK (2014) 2-Mercaptobenzoxazole as a copper corrosion inhibitor in chloride solution: Electrochemistry, 3D-profilometry, and XPS surface analysis. Corros Sci 80:82–95. https://doi.org/10.1016/j.corsci.2013.11.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Zarebidaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarebidaki, A., Mofidi, S.H.H. & Bahri, F.I. Effect of 2-mercaptobenzothiazole on the corrosion inhibition of Cu–10Ni alloy in 3 wt% NaCl solution. J Appl Electrochem 52, 1773–1788 (2022). https://doi.org/10.1007/s10800-022-01750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01750-6

Keywords

Navigation