Skip to main content
Log in

Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2015

Abstract

The development of identification criteria for crop plants based on phytoliths is of high relevance for archaeology, palaeoecology and plant systematics. While identification criteria are available for major food crops, these are mostly based on phytoliths from inflorescences, while other plant parts remain undetected. This paper focuses on bilobate phytoliths from leaves of Panicum miliaceum L. (common millet) and Setaria italica (L.) P. Beauv. (foxtail millet), two taxa that co-occur in regions of Asia and Europe since prehistory and regularly occur at archaeological sites in Eurasia. Leaves of the investigated taxa were systematically sampled to explore the variation of short cells and to collect 27 morphometric variables of bilobate phytoliths with newly developed open-source software. The data was analysed by discriminant analysis, analysis of variance and multiple comparison tests. The resulting morphometric data from five populations per species enables a distinction between the bilobate phytoliths of P. miliaceum and S. italica. Observed differences between populations within species affect only few parameters. This possibility to classify populations of bilobate phytoliths from P. miliaceum and S. italica leaves offers a new method for the detection and identification of these taxa in archaeology, amongst others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert RM, Bamford MK, Cabanes D (2009) Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quatern Int 193:41–48

    Article  Google Scholar 

  • Anderson PC (2003) Observations on the threshing sledge and its products in ancient and present-day Mesopotamia. In: Anderson PC, Cummings LS, Schippers TK, Simonet B (eds) Le traitement des récoltes: un regard sur la diversité, du néolithique au présent. APDCA, Antibes, pp 417–438

    Google Scholar 

  • Atahan P, Itzstein-Davey F, Taylor D, Dodson J, Qin J, Zheng H, Brooks A (2008) Holocene-aged sedimentary records of environmental changes and early agriculture in the lower Yangtze, China. Quatern Sci Rev 27:556–570

    Article  Google Scholar 

  • Ball TB, Davis AL, Evett R, Ladwig JL, Tromp M, Out WA, Portillo M (2015). Morphometric analysis of phytoliths: recommendations towards standardization. J Archaeol Sci (in press)

  • Ball TB, Brotherson JD (1992) The effect of varying environmental conditions on phytolith morphometries in two species of grass (Bouteloua curtipendula and Panicum virginatum). Scanning Microsc 6(4):1163–1181

    Google Scholar 

  • Ball TB, Brotherson JD, Gardner JS (1993) A typologic and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Can J Botany 72:1182–1192

    Article  Google Scholar 

  • Ball TB, Vrydaghs L, Van den Hauwe I, Manwaring J, De Langhe E (2006) Differentiating banana phytoliths: wild and edible Musa acuminate and Musa balbisiana. J Archaeol Sci 33:1228–1236

    Article  Google Scholar 

  • Ball TB, Ehlers R, Standing MD (2009) Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breeding Sci 59:505–512

    Article  Google Scholar 

  • Bestel S, Crawford GW, Liu L, Shi J, Song Y, Chen X (2014) The evolution of millet domestication, Middle Yellow River region, North China: evidence from charred seeds at the late Upper Paleolithic Shizitan Locality 9 site. The Holocene 24(3):261–265

    Article  Google Scholar 

  • Bretz F, Hothorn T, Westfall P (2011) Multiple comparisons using R. Chapman and Hall/CRC, London

    Google Scholar 

  • Burns RP, Burns R (2009) Business research methods and statistics using SPSS. Sage, London

    Google Scholar 

  • Chauhan DK, Tripathi DK, Rai NK, Rai AK (2011) Detection of biogenic silica in leaf blade, leaf sheath, and stem of Bermuda Grass (Cynodon dactylon) using LIBS and phytolith analysis. Food Biophys 6:416–423

    Article  Google Scholar 

  • Chen T, Wu Y, Zhang Y et al (2012) Archaeobotanical study of ancient food and cereal remains at the Astana cemeteries, Xinjiang, China. Plos One 7(9):e45137. doi:10.1371/journal.pone.0045137

    Article  Google Scholar 

  • Clark CA, Gould FW (1975) Some epidermal characteristics of paleas of Dichanthelium, Panicum, and Echinochloa. Am J Bot 62(7):743–748

    Article  Google Scholar 

  • Dal Corso M (2014) Environmental history and development of the human landscape in a North-Eastern Italian lowland during the Bronze Age: a multidisciplinary case-study. Dissertation, Kiel University, Germany

  • de Wet JMJ, Oestry-Sidd LL, Cubero JI (1979) Origin and evolution of foxtail millets Setaria italica. J d’Agric Tradition Botan Appl 26:53–64

    Article  Google Scholar 

  • Di Lernia S, Massamba N’siala I, Mercuri AM (2012) Saharan prehistoric basketry. archaeological and archaeobotanical analysis of the early-middle Holocene assemblage from Takarkori (Acacus Mts., SW Libya). J Archaeol Sci 39:1837–1853

    Article  Google Scholar 

  • Ellis RP (1987) A review of comparative leaf blade anatomy in the systematics of the Poaceae: the past twenty-five years. In: Soderstrom TR (ed) Grass systematics and evolution. Smithsonian Institution Press, Washington DC, pp 3–10

    Google Scholar 

  • Ellis RP (1988) Leaf anatomy and systematic of Panicum (Poaceae: Panicoideae) in Southern Africa. In: Goldblatt P, Lowry PP (eds) Modern systematic studies in African botany. Missouri Botanical Garden, St. Louis, pp 129–156

    Google Scholar 

  • Fahmy AG (2008) Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: tribe Paniceae. Plant Syst Evol 270:1–23

    Article  Google Scholar 

  • Fenwick RSH, Lentfer CJ, Weisler MI (2011) Palm reading: a pilot study to discriminate phytoliths of four Arecaceae (Palmae) taxa. J Archaeol Sci 38:2190–2199

    Article  Google Scholar 

  • Fujiwara H (1993) Research into the history of rice cultivation using plant opal analysis. In: Pearsall DM, Piperno DR (eds) Current research in phytolith analysis: application in archaeology and palaeoecology. University of Pennsylvania, Philadelphia, pp 147–158

    Google Scholar 

  • Fukunaga K, Wang Z, Kato K, Kawase M (2002) Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, Setaria italica (L.) P. Beauv. Genet Resour Crop Ev 49:95–101

    Article  Google Scholar 

  • Fukunaga K, Ichitani K, Kawase M (2006) Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theor Appl Genet 113:261–269

    Article  Google Scholar 

  • Fuller DQ, Stevens C, McClatchie M (2014) Routine activities, tertiary refuse, and labor organization: social inferences from everyday archaeobotany. In: Lancelotti C, Savard M (eds) Madella M. Tuscon Press, Arizona, pp 174–217

    Google Scholar 

  • Gong Y, Yang Y, Ferguson DK, Tao D, Li W, Wang C, Lü E, Jiang H (2011) Investigation of ancient noodles, cakes and millet at the Subeixi site, Xinjiang, China. J Archaeol Sci 38:470–479

    Article  Google Scholar 

  • Grubben GJH, Partohardjono S (1996) Plant resources of South-East Asia. volume 10: cereals. Prosea Foundation, Bogor

    Google Scholar 

  • Gu Y, Zhao Z, Pearsall DM (2013) Phytolith morphology research on wild and domesticated rice species in East Asia. Quatern Int 287(21):141–148

    Article  Google Scholar 

  • Harvey EL, Fuller DQ (2005) Investigating crop processing using phytoliths analysis: the example of rice and millets. J Archaeol Sci 32:739–752

    Article  Google Scholar 

  • Hodson MJ, Parry DW (1982) The ultrastructure and analytical microscopy of silicon deposition in the aleurone layer of the caryopsis of Setaria italica (L.) Beauv. Ann Bot-London 50:221–228

    Google Scholar 

  • Hodson MJ, Sangster AG, Parry DW (1982) Silicon deposition in the inflorescence bristles and macrohairs of Setaria italica (L.) Beauv. Ann Bot-London 50:843–850

    Google Scholar 

  • Hunt HV, Van der Linden M, Liu X, Motuzaite-Matuzeviciute G, Colledge S, Jones MK (2008) Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist Archaeobot 17(Suppl 1):S5–S18

    Article  Google Scholar 

  • Hunt HV, Campana MG, Lawes MC et al (2011) Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol 20:4756–4771

    Article  Google Scholar 

  • IBM Corp (2012) IBM SPSS statistics for windows, version 21.0. IBM Corp, Armonk

    Google Scholar 

  • Itzstein-Davey F, Atahan P, Dodson J, Taylor D, Zheng H (2007) A sediment-based record of Lateglacial and Holocene environmental changes. The Holocene 17(8):1221–1231

    Article  Google Scholar 

  • Knörzer K-H (1971) Eisenzeitliche pflanzenfunde im Rheinland. Bonn Jahrb 171:40–58

    Google Scholar 

  • Krishnan S, Samson NP, Ravichandran P, Narasimhan D, Dayanandan P (2000) Phytoliths of Indian grasses and their potential use in identification. Bot J Linn Soc 132:241–252

    Article  Google Scholar 

  • Kroll H (1983) Kastanas. Ausgrabungen in einem Siedlungshügel der Bronze- und Eisenzeit Makedoniens 1975–1979. Die Pflanzenfunde. Prähistorische Archäologie in Südosteuropa 2

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974

    Article  Google Scholar 

  • Lancelotti C, Madella M (2012) The ‘invisible’ product: developing markers for identifying dung in archaeological contexts. J Archaeol Sci 39(4):953–963

    Article  Google Scholar 

  • Li Y, Wu S, Cao Y (1995) Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica 83:79–85

    Article  Google Scholar 

  • Li X, Dodson J, Zhou X, Zhang H, Masutomoto R (2007) Early cultivated wheat and broadening of agriculture in Neolithic China. The Holocene 17(5):555–560

    Article  Google Scholar 

  • Lu TDL (2002) A green foxtail (Setaria viridis) cultivation experiment in the Middle Yellow River Valley and some related issues. Asian Perspec 41(1):1–14

    Article  Google Scholar 

  • Lu H, Liu K-B (2003) Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Divers Distrib 9:73–87

    Article  Google Scholar 

  • Lu H, Yang X, Ye M, Liu K-B, Xia Z, Ren X, Cai L, Wu N, Liu T-S (2005) Millet noodles in Late Neolithic China. Nature 437:967–968

    Article  Google Scholar 

  • Lu H, Zhang J, Wu N, Liu K-B, Xu D (2009a) Phytoliths analysis for the discrimination of Foxtail Millet (Setaria italica) and Common Millet (Panicum miliaceum). Plos One 4(2):e4448. doi:10.1371/journal.pone.0004448

    Article  Google Scholar 

  • Lu H, Zhang J, Liu K-B et al (2009b) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10000 years ago. Proc Natl Acad Sci U S A 106:7367–7372

    Article  Google Scholar 

  • Ma Z, Li Q, Huan X, Yang X, Zheng J, Ye M (2014) Plant microremains provide direct evidence for the functions of stone knives from the Lajia site, northwestern China. Chin Sci Bull 59(11):1151–1158

    Article  Google Scholar 

  • Madella M (2001) Understanding archaeological structures by means of phytolith analysis: a test from the iron age site of Kilise Tepe—Turkey. In: Meunier JD, Colin F, Faure-Denard L (eds) The phytoliths: applications in earth science and human history. Balkema, Lisse, pp 173–182

    Chapter  Google Scholar 

  • Madella M (2007) The silica skeletons from the anthropic deposits. In: Whittle A (ed) The early Neolithic on the great Hungarian plain. vol III. Publicationes Instituti Archaeologici Academiae Scientiarum Hungaricae, Budapest, pp 447–460

    Google Scholar 

  • Madella M, García-Granero JJ, Out WA, Ryan P, Usai D (2014a) Microbotanical evidence of domestic cereals in Africa 7000 years ago. Plos One 9(10):e110177. doi:10.1371/journal.pone.0110177

    Article  Google Scholar 

  • Madella M, Lancelotti C, García-Granero JJ (2014b) Millet microremains—an alternative approach to understand cultivation and use of critical crops in Prehistory. Archaeol Anthropol Sci. doi:10.1007/s12520-013-0130-y

    Google Scholar 

  • Mbida CM, Van Neer W, Doutrelepont H, Vrydaghs L (2000) Evidence for banana cultivation and animal husbandry during the first millennium BC in the forest of Southern Cameroon. J Archaeol Sci 27(2):151–162

    Article  Google Scholar 

  • Metcalfe CR (1960) Anatomy of the monocotyledons gramineae. Clarendon, Oxford

    Google Scholar 

  • Motuzaite-Matuzeviciute G, Jacob J, Telizhenko S, Jones MK (2013a) Miliacin in palaeosols from an early iron age in Ukraine reveal in situ cultivation of broomcorn millet. Archaeol Anthropol Sci. doi:10.1007/s12520-013-0142-7

    Google Scholar 

  • Motuzaite-Matuzeviciute G, Staff RA, Hunt HV, Liu X, Jones MK (2013b) The early chronology of broomcorn millet (Panicum miliaceum) in Europe. Antiquity 87:1073–1085

    Article  Google Scholar 

  • Mulholland SC, Rapp G Jr (1992) Phytolith systematic: an introduction. In: Rapp G Jr, Mulholland SC (eds) Phytolith systematics: emerging issues. Plenum Press, New York, pp 1–13

    Chapter  Google Scholar 

  • Out WA, Pertusa Grau J, Madella M (2014) A new method for morphometric analysis of opal phytoliths from plants. Microsc Microanal 20(6):1876–1887

    Article  Google Scholar 

  • Parr JF, Sullivan LA (2014) Comparison of two methods for the isolation of phytolith occluded carbon from plant material. Plant Soil 374:45–53

    Article  Google Scholar 

  • Parry DW, Hodson MJ (1982) Silica distribution in the caryoposis and inflorescence bracts of foxtail millet [Setaria italica (L.) Beauv.] and its possible significance in carcinogenesis. Ann Bot-London 49:531–540

    Google Scholar 

  • Pearsall DM, Piperno DR, Dinan EH, Umlauf M, Zhao Z, Benfer RA (1995) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Econ Bot 49(2):183–196

    Article  Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  • Piperno DR (2009) Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quatern Int 193:146–159

    Article  Google Scholar 

  • Portillo M, Ball T, Manwaring J (2006) Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa Schreb. Econ Bot 60(2):121–129

    Article  Google Scholar 

  • Powers AH (1992) Great expectations: a short historical review of European phytolith systematics. In: Rapp G Jr, Mulholland SC (eds) Phytolith systematics. Plenum Press, New York, pp 15–35

    Chapter  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69(4):377–440

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Last access 1 November 2014

  • Radomski KU, Neumann K (2011) Grasses and grinding stones: inflorescence phytoliths from modern West African Poaceae and archaeological stone artefacts. In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African past. current approaches to African archaeobotany. Africa Magna, Frankfurt, pp 153–166

    Google Scholar 

  • Rajendiran S, Vassanda Coumar M, Kundu Ajay S, Dotaniya ML, Subba Rao A (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci India 103(2):911–920

    Google Scholar 

  • Renvoize SA (1987) A survey of leaf-blade anatomy in grasses XI. Paniceae. Kew Bull 42(3):739–768

  • Rosen AM (1992) Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. In: Rapp G, Mulholland SC (eds) Phytolith systematics: emerging issues. Plenum Press, New York, pp 129–147

    Chapter  Google Scholar 

  • Rosen AM (2001) Phytolith evidence for agro-pastoral economies in the Scythian period of southern Kazakhstan. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. Balkema, Lisse, pp 183–198

    Chapter  Google Scholar 

  • Ryan P (2011) Plants as material culture in the Near Eastern Neolithic: perspectives from the silica skeleton artifactual remains at Çatalhöyük. J Anthropol Archaeol 30:292–305

    Article  Google Scholar 

  • Schaarschmidt F, Vaas L (2009) Analysis of trials with complex treatment structure using multiple contrast tests. HortSci 44(1):188–195

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological image-analysis. Nat Methods 9(7):676–682

    Article  Google Scholar 

  • Shaheen S, Ahmad M, Kkan F et al (2011) Systematic application of palyno-anatomical characterization of Setaria species based in scanning electron microscopy (SEM) and light microscope (LM) analysis. J Med Plants Res 5(24):5803–5809

    Google Scholar 

  • Shaheen S, Ahmad M, Khan F et al (2012) Elemental dispersive spectrophotometer analysis and morpho-anatomical characterization of Panicum species from Pakistan. J Med Plants Res 6(9):1707–1712

    Google Scholar 

  • Shillito L-M (2013) Grains of truth or transparent blindfolds? a review of current detabes in archaeological phytolith analysis. Veg Hist Archaeobot 22(1):71–82

    Article  Google Scholar 

  • Sivasubramanian G, Shangmugam C, Parameswaran VR (2013) Copper (II) immobilized on silica extracted from foxtail millet husk: a heterogeneous catalyst for the oxidation of tertiary amines under ambient conditions. J Porous Mat 20(2):417–430

    Article  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York

    Google Scholar 

  • Wang X, Jiang H, Shang X et al (2014) Comparison of dry ashing and wet oxidation methods for recovering articulated husk phytoliths of foxtail millet and common millet from archaeological soil. J Archaeol Sci 45:234–239

    Article  Google Scholar 

  • Weisskopf A, Lee G-A (2014) Phytolith identification criteria for foxtail and broomcorn millets: a new approach to calculating crop ratios. Archaeol Anthropol Sci. doi:10.1007/s12520-014-0190-7

    Google Scholar 

  • Weisskopf A, Harvey E, Kingwell-Banham E, Kajale M, Mohanty R, Fuller DQ (2014) Archaeobotanical implications of phytolith assemblages from cultivated rice systems, wild rice stands and macro-regional patterns. J Archaeol Sci 51:43–53

    Article  Google Scholar 

  • Yang X, Lu H, Liu T, Han J (2005) Micromorphology characteristics of starch grains from Setaria italica, Panicum miliaceum and S. viridis and its signification for archaeobotany. Quatern Sci 25:224–227

    Google Scholar 

  • Yang X, Zhang J, Perry L, Ma Z, Wan Z, Li M, Diao X, Lu H (2012) From the modern to the archaeological: starch grains of millets and their wild relatives in North China. J Archaeol Sci 39:247–254

    Article  Google Scholar 

  • Yang X, Ma Z, Li Q et al (2013) Experiments with lithic tools: understanding starch residues from crop harvesting. Archaeometry 56(5):828–840

    Article  Google Scholar 

  • Zhang J, Lu H, Wu N et al (2010) Phytolith evidence for rice cultivation and spread in Mid-Late Neolithic archaeological sites in central North China. Boreas 39:592–602

    Google Scholar 

  • Zhang J, Lu h, Wu N, Yang X, Diao X (2011) Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). Plos One 6(5):e19726. doi:10.1371/journal.pone.0019726

    Article  Google Scholar 

  • Zhang J, Lu H, Wu N, Qin X, Wang L (2012) Palaeoenvironment and agriculture of ancient Loulan and Milan on the Silk Road. The Holocene 23(2):208–217

    Article  Google Scholar 

  • Zhao Z (2011) New archaeobotanical data for the study of the origins of agriculture in China. Curr Anthropol 52(S4):S295–S306

    Article  Google Scholar 

  • Zhao Z, Pearsall DM, Benfer RA Jr, Piperno DR (1998) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis II: finalized method. Econ Bot 52(2):134–145

    Article  Google Scholar 

  • Zucol AF (1998) Microfitolitos de las Poaceae Argentinas: II. Microfitolitos foliares de algunas especies del genero Panicum (Poaceae, Paniceae) de la provincia de Entre Ríos. Darwinia 36(1–4):29–50

    Google Scholar 

  • Zuo XX, Lü HY (2011) Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chinese Sci Bull 56:3451–3456

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a Marie Curie Intra European Fellowship [PHYTORES, 273610, 2011–2013]. We heartily thank M. Hasler (Kiel University) for advice on the statistical analysis, the National Plant Germplasm System of the United States Department of Agriculture for providing the seeds, N. Ibáñes, N. Abellán, and M. Veny, A. Susanna, J.M. Montserrat (Botanical Institute of Barcelona and Barcelona Botanic Garden) for growing plant populations and making herbarium material available, M.K. Jones (University of Cambridge), D.Q. Fuller (University College London), L. Duistermaat and G. Thijsse (Naturalis Biodiversity Centre) for providing plant material, X. Liu (University of Cambridge) for information on a Panicum population, A. Wossink (University of Chicago) and E. van Hees (Leiden University) for providing literature, I. Reese for figure editing, E. Küçükkaraca for text editing and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welmoed A. Out.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Information Fig. 1

Panicum miliaceum, measured masks of one sample from population 5 (GPR/IMF: Korea). Scale: mean Feret of the shown phytoliths = 54.33 μm (GIF 120 kb)

High resolution image (EPS 1306 kb)

Supplementary Information Fig. 2

Setaria italica, measured masks of one sample from population 8 (National Herbarium of the Netherlands). Scale: mean Feret of the shown phytoliths = 73.51 μm (GIF 127 kb)

High resolution image (EPS 1316 kb)

Supplementary Information Table 1

Panicum miliaceum, descriptive statistics for morphometric variables of the bilobate phytoliths per population. See Table 2 for the units of measurement. The population numbers correspond with Table 1 (XLS 31 kb)

Supplementary Information Table 2

Setaria italica, descriptive statistics for morphometric variables of the bilobate phytoliths per population. See Table 2 for the units of measurement. The population numbers correspond with Table 1 (XLS 30 kb)

Supplementary Information Table 3

Morphometric data of P. miliaceum and S. italica. See Table 2 for the unit of measurement (XLS 1173 kb)

Supplementary Information Table 4

Output of the multiple contrast tests comparing the mean values of the various populations per taxon. Pop = population. The population numbers 1–5 of S. italica correspond with the numbers 6–10 in Table 1 (same order). Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 (XLS 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Out, W.A., Madella, M. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeol Anthropol Sci 8, 505–521 (2016). https://doi.org/10.1007/s12520-015-0235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-015-0235-6

Keywords

Navigation