Skip to main content
Log in

Electrodynamic Analysis of Near-Field Enhancement

  • Published:
NanoBiotechnology

Abstract

The paper reviews computational models for plasmonic field enhancement, especially with applications to tip-enhanced scanning near-field optical microscopy (SNOM). Both plasmon-enhanced and scattering-type SNOM are considered. The importance of full electrodynamic analysis is emphasized: the electrostatic treatment is valid only if the size of the whole system, rather than its individual components (such as the apex of the tip or an individual particle in a cluster), is much smaller than the wavelength. Illustrative numerical results are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.nanonics.co.il/indexphp?page_id=149.

  2. Unless the external field happens to be orthogonal (in the sense of functional analysis) to the respective resonance eigenmode.

  3. See also http://www.ddm.org.

References

  1. Synge EH. A suggested method for extending microscopic resolution into the ultramicroscopic region. Philos Mag. 1928;6:356–62.

    CAS  Google Scholar 

  2. Synge EH. An application of piezoelectricity to microscopy. Philos Mag. 1932;13:297–300.

    Google Scholar 

  3. Richards D. Near-field microscopy: throwing light on the nanoworld. Philos Trans R Soc Lond A. 2003; 361(1813):2843–57.

    Article  ADS  CAS  Google Scholar 

  4. Hartschuh A, Beversluis MR, Bouhelier A, Novotny L. Tip-enhanced optical spectroscopy. Philos Trans R Soc Lond A. 2004;362:807–19.

    Article  ADS  CAS  Google Scholar 

  5. Kawata S, Shalaev VM, editors. Tip enhancement. Amsterdam: Elsevier Science; 2007.

    Google Scholar 

  6. O’Keefe JA. Resolving power of visible light. J Opt Soc Am. 1956;46(5):359.

    Article  Google Scholar 

  7. Ash EA, Nichols G. Super-resolution aperture scanning microscope. Nature. 1972;237:510–2.

    Article  PubMed  ADS  CAS  Google Scholar 

  8. Lewis A, Isaacson M, Harootunian A, Murray A. Development of a 500 å spatial resolution light microscope I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy. 1984;13(3):227–31.

    Article  Google Scholar 

  9. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL. Breaking the diffraction barrier: optical microscopy of a nanometric scale. Science. 1991;251(5000):1468–70.

    Article  PubMed  ADS  Google Scholar 

  10. Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992;257(5067):189–95.

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Novotny L. The history of near-field optics. Prog Opt. 2007;50:137–84.

    Article  Google Scholar 

  12. Wessel JE. Surface-enhanced optical microscopy. J Opt Soc Am B. 1985;2:1538–41.

    Article  ADS  CAS  Google Scholar 

  13. Wickramasinghe HK, Williams CC. Apertureless near field optical microscope. US Patent 4,947,034, 7 August 1990.

  14. Zenhausern F, O’Boyle MP, Wickramasinghe HK. Apertureless near-field optical microscope. Appl Phys Lett. 1994;65(13):1623–25.

    Article  ADS  CAS  Google Scholar 

  15. Zenhausern F, Martin Y, Wickramasinghe HK. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science. 1995;269(5227):1083–5.

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Wang L, Xu X. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl Phys Lett. 2007;90(26):261105.

    Article  ADS  CAS  Google Scholar 

  17. Hillenbrand R, Keilmann F. Complex optical constants on a subwavelength scale. Phys Rev Lett. 2000;85(14):3029–32, October.

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature. 2002;418(6894):159–62.

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J. Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl Phys Lett. 2003;83(2):368–70.

    Article  ADS  CAS  Google Scholar 

  20. Keilmann F, Hillenbrand R. Near-field microscopy by elastic light scattering from a tip. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci. 2004;362(1817):787–805.

    Article  ADS  CAS  Google Scholar 

  21. Deutsch B, Hillenbrand R, Novotny L. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt Express. 2008;16(2):494–501.

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Kawata S, Shalaev VM, editors. Nanophotonics with surface plasmons. Amsterdam: Elsevier Science; 2007.

    Google Scholar 

  23. Hallen HD, Jahncke CL. The electric field at the apex of a near-field probe: implications for nano-raman spectroscopy. J Raman Spectrosc. 2003;34(9):655–62.

    Article  ADS  CAS  Google Scholar 

  24. Lee KG, Kihm HW, Kihm JE, et al. Vector field microscopic imaging of light. Nat Photon. 2007;1:53–6.

    Article  ADS  CAS  Google Scholar 

  25. Lee KG, Kihm HW, Ahn KJ, Ahn JS, Suh YD, Lienau C, Kim DS. Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape. Opt Express. 2007;15(23):14993–5001.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Gersen H, Novotny L, Kuipers L, et al. On the concept of imaging nanoscale vector fields. Nat Photon. 2007;1(5):242.

    Article  ADS  CAS  Google Scholar 

  27. Kim J, Song K-B. Recent progress of nano-technology with nsom. Micron. 2007;38(4):409–26, June.

    Article  PubMed  CAS  Google Scholar 

  28. Kreibig U, Vollmer M. Optical properties of metal clusters. New York: Springer; 1995.

    Google Scholar 

  29. Maier SA, Atwater HA. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys. 2005;98:011101.

    Article  ADS  CAS  Google Scholar 

  30. Maier SA. Plasmonics: fundamentals and applications. New York: Springer; 2007.

    Google Scholar 

  31. Ha Y-K, Kim J-E, Park HY, Kee C-S, Lim H. Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities. Phys Rev B. 2002;66(7):075109, August.

    Article  ADS  CAS  Google Scholar 

  32. Kreibig U, Von Fragstein C. Limitation of electron mean free path in small silver particles. Z Phys. 1969;224(4):307–23.

    Article  ADS  CAS  Google Scholar 

  33. Liebsch A. Surface-plasmon dispersion and size dependence of mie resonance: silver versus simple metals. Phys Rev B. 1993;48(15):11317–28, October.

    Article  ADS  CAS  Google Scholar 

  34. Liebsch A. Surface plasmon dispersion of Ag. Phys Rev Lett. 1993;71(1):145–8, July.

    Article  PubMed  ADS  CAS  Google Scholar 

  35. Palpant B, Prével B, Lermé J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M. Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B. 1998;57(3):1963–70, January.

    Article  ADS  CAS  Google Scholar 

  36. Quinten M. Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Z Phys B Condens Matter. 1996;101(2):211–7.

    Article  ADS  CAS  Google Scholar 

  37. Quinten M. Optical effects associated with aggregates of clusters. J Clust Sci. 1999;10(2):319–58.

    Article  CAS  Google Scholar 

  38. Scaffardi LB, Tocho JO. Size dependence of refractive index of gold nanoparticles. Nanotechnology. 2006;17(5):1309–15.

    Article  ADS  CAS  Google Scholar 

  39. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH. Scattering spectra of single gold nanoshells. Nano Lett. 2004;4(12):2355–9.

    Article  ADS  CAS  Google Scholar 

  40. Stoller P, Jacobsen V, Sandoghdar V. Measurement of the complex dielectric constant of a single gold nanoparticle. Opt Lett. 2006;31(16):2474–6.

    Article  PubMed  ADS  CAS  Google Scholar 

  41. Kerker M, Wang DS, Chew H. Surface enhanced raman-scattering (sers) by molecules adsorbed at spherical particles. Appl Opt. 1980;19:3373–88.

    Article  ADS  CAS  Google Scholar 

  42. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.

    Article  CAS  Google Scholar 

  43. Tsukerman I. Computational methods for nanoscale applications: particles, plasmons and waves. New York: Springer; 2007.

    Google Scholar 

  44. Panofsky WKH, Phillips M. Classical electricity and magnetism. Reading: Addison-Wesley; 1962.

    MATH  Google Scholar 

  45. Harrington RF. Time-harmonic electromagnetic fields. New York: Wiley-IEEE Press; 2001.

    Google Scholar 

  46. Smythe WB. Static and dynamic electricity. Amsterdam: John Benjamins; 1989.

    Google Scholar 

  47. Dai J, Čajko F, Tsukerman I, Stockman MI. Electrodynamic effects in plasmonic nanolenses. Phys Rev B Condens Matter. 2008;77(11):115419.

    ADS  Google Scholar 

  48. Li K, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett. 2003;91(22):227402.

    Article  PubMed  ADS  CAS  Google Scholar 

  49. Fredkin DR, Mayergoyz ID. Resonant behavior of dielectric objects (electrostatic resonances). Phys Rev Lett. 2003;91(25):253902.

    Article  PubMed  ADS  CAS  Google Scholar 

  50. Mayergoyz ID, Fredkin DR, Zhang Z. Electrostatic (plasmon) resonances in nanoparticles. Phys Rev B. 2005;72(15):155412.

    Article  ADS  CAS  Google Scholar 

  51. Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and emission of light by small particles. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  52. Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transfer. 1996;55:535–75.

    Article  ADS  CAS  Google Scholar 

  53. Mishchenko MI, Videen G, Babenko VA, Khlebtsov NG, Wriedt T. T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J Quant Spectrosc Radiat Transfer. 2004;88:357–406.

    CAS  Google Scholar 

  54. Mishchenko MI, Travis LD. Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J Quant Spectrosc Radiat Transfer. 1998;60:309–24.

    Article  ADS  CAS  Google Scholar 

  55. Mackowski DW. Analysis of radiative scattering for multiple sphere configurations. Proc R Soc Lond A. 1991;433:599–614.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Mackowski DW, Mishchenko MI. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A. 1996;13:2266–77.

    Article  ADS  Google Scholar 

  57. Xu Yl. Electromagnetic scattering by an aggregate of spheres. Appl Opt. 1995;34:4573–88.

    Article  ADS  Google Scholar 

  58. Barber P, Yeh C. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl Opt. 1975;14(12):2864–72.

    ADS  Google Scholar 

  59. Stratton JA. Electromagnetic theory. McGraw-Hill: New York; 1941.

    MATH  Google Scholar 

  60. Doicu A, Eremin YA, Wriedt T. Convergence of the T-matrix method for light scattering from a particle on or near a surface. Opt Commun. 1999;159:266–77.

    Article  ADS  CAS  Google Scholar 

  61. Wriedt T, Doicu A. T-matrix method for light scattering from a particle on or near an infinite surface. In: Moreno F, González F, editors. Springer lecture notes in physics, vol. 534. New York: Springer; 2000. p. 113–32.

    Google Scholar 

  62. Hafner C. Post-modern electromagnetics: using intelligent MaXwell solvers. New York: Wiley; 1999.

    Google Scholar 

  63. Hafner C. MaX-1: a visual electromagnetics platform for PCs. New York: Wiley; 1999.

    Google Scholar 

  64. Moreno E, Erni D, Hafner C, Vahldieck R. Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. Opt Soc Am A. 2002;19(1):101–11.

    Article  ADS  Google Scholar 

  65. Esteban R, Vogelgesang R, Kern K. Simulation of optical near and far fields of dielectric apertureless scanning probes. Nanotechnology. 2006;17(2):475–82.

    Article  ADS  CAS  Google Scholar 

  66. Esteban R, Vogelgesang R, Kern K. Tip-substrate interaction in optical near-field microscopy. Phys Rev B Condens Matter. 2007;75(19):195410.

    ADS  Google Scholar 

  67. Draine B, Flatau P. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A. 1994;11:1491–9.

    Article  ADS  Google Scholar 

  68. Draine B, Flatau PJ. User guide to the discrete dipole approximation code DDSCAT 6.1; 2006.

  69. Flatau PJ. Improvements in the discrete-dipole approximation method of computing scattering and absorption. Opt Lett. 1997;22:1205–7.

    Article  PubMed  ADS  CAS  Google Scholar 

  70. Lakhtakia A, Mulholland G. On two numerical techniques for light scattering by dielectric agglomerated structures. J Res Natl Inst Stand Technol. 2003;98(6):699–716.

    Google Scholar 

  71. Peltoniemi J. Electromagnetic scattering by irregular grains using variational volume integral equation method. J Quant Spectrosc Radiat Transfer. 1996;55(5):637–47.

    Article  ADS  CAS  Google Scholar 

  72. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B. 2001;105:2343–50.

    Article  CAS  Google Scholar 

  73. Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nanoletters. 2003;3(8):1087–90.

    ADS  CAS  Google Scholar 

  74. Félidj N, Aubard J, Lévi G. Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids. J Chem Phys. 1999;111(3):1195–208.

    Article  ADS  Google Scholar 

  75. Tsukerman I. Electromagnetic applications of a new finite-difference calculus. IEEE Trans Magn. 2005;41(7):2206–25.

    Article  ADS  Google Scholar 

  76. Tsukerman I. A class of difference schemes with flexible local approximation. J Comput Phys. 2006;211(2):659–99.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. Čajko F, Tsukerman I. Flexible approximation schemes for wave refraction in negative index materials. IEEE Trans Magn. 2008;44(6):1378–81, June.

    Article  ADS  Google Scholar 

  78. Dai J, Tsukerman I, Rubinstein A, Sherman S. New computational models for electrostatics of macromolecules in solvents. IEEE Trans Magn. 2007;43(4):1217–20.

    Article  ADS  CAS  Google Scholar 

  79. Tsukerman I, Čajko F. Photonic band structure computation using FLAME. IEEE Trans Magn. 2008;44(6):1382–5, June.

    Article  ADS  Google Scholar 

  80. Tsukerman I. Quasi-homogeneous backward-wave plasmonic structures: theory and accurate simulation. http://arxiv.org/abs/0807.1707v1; 2008.

  81. Li Z, Yang Z, Xu H. Comment on “self-similar chain of metal nanospheres as an efficient nanolens”. Phys Rev Lett. 2006;97(7):079701.

    Article  PubMed  ADS  CAS  Google Scholar 

  82. Li K, Stockman MI, Bergman DJ. Li, Stockman, and Bergman reply. Phys Rev Lett. 2006;97(7):079702.

    Article  ADS  CAS  Google Scholar 

  83. Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6(12–15):4370–9.

    Article  ADS  CAS  Google Scholar 

  84. Monk P. Finite element methods for Maxwell’s equations. Oxford: Clarendon; 2003.

    Book  MATH  Google Scholar 

  85. Jin J. The finite element method in electromagnetics. New York: Wiley–IEEE Press; 2002.

    MATH  Google Scholar 

  86. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far-infrared. Appl Opt. 1983;22:1099–119.

    Article  ADS  CAS  Google Scholar 

  87. Weaver JH, Olson CG, Lynch, DW. Optical properties of crystalline tungsten. Phys Rev B. 1975;12:1293–7.

    Article  ADS  CAS  Google Scholar 

  88. Martin YC, Hamann HF, Wickramasinghe HK. Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys. 2001;89(10):5774–8.

    Article  ADS  CAS  Google Scholar 

  89. Mehtani D, Lee N, Hartschuh RD, Kisliuk A, Foster MD, Sokolov AP, Čajko F, Tsukerman I. Optical properties and enhancement factors of the tips for apertureless near-field optics. J Opt A Pure Appl Opt. 2006;8:S183–90.

    Article  ADS  Google Scholar 

  90. Neacsu CC, Steudle GA, Raschke MB. Plasmonic light scattering from nanoscopic metal tips. Appl Phys B. 2004;80:295–300.

    Article  ADS  CAS  Google Scholar 

  91. Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis. New York: Wiley; 2000.

    MATH  Google Scholar 

  92. Szabó B, Babuška I. Finite element analysis. New York: Wiley; 1991.

    MATH  Google Scholar 

  93. Oden JT, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl. 2001;41:735–56.

    Article  MATH  MathSciNet  Google Scholar 

  94. Toselli A, Widlund O. Domain decomposition methods—algorithms and theory. In: Springer series in computational mathematics, vol. 34. New York: Springer; 2005.

    Google Scholar 

  95. Brehm M, Schliesser A, Čajko F, Tsukerman I, Keilmann F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Opt Express. 2008;16(15):11203–15.

    Article  PubMed  ADS  CAS  Google Scholar 

  96. Merlin R. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science. 2007;317(5840):927–9, August.

    Article  PubMed  ADS  CAS  Google Scholar 

  97. Grbic A, Jiang L, Merlin R. Near-field plates: subdiffraction focusing with patterned surfaces. Science. 2008;320(5875):511–3, April.

    Article  PubMed  ADS  CAS  Google Scholar 

  98. Tsukerman I. Superfocusing by plasmonic/dielectric layers http://arxiv.org/abs/0811.2247 Opt Lett. 2008 (accepted).

Download references

Acknowledgements

We are grateful to Alexei Sokolov and Fritz Keilmann for giving us the opportunity to collaborate with them on the SNOM analysis. We thank Mark Stockman, Gennady Shvets, and Isaak Mayergoyz for interesting discussions and Hans Hallen for his invitation to submit this paper. The anonymous reviewer’s kind and helpful comments are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Tsukerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukerman, I., Čajko, F. & Dai, J. Electrodynamic Analysis of Near-Field Enhancement. Nanobiotechnol 3, 148–163 (2007). https://doi.org/10.1007/s12030-008-9016-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9016-y

Keywords

Navigation