Skip to main content
Log in

Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Localized surface plasmons are charge density oscillations confined to metallic nanoparticles. Excitation of localized surface plasmons by an electromagnetic field at an incident wavelength where resonance occurs results in a strong light scattering and an enhancement of the local electromagnetic fields. This paper is devoted to the mathematical modeling of plasmonic nanoparticles. Its aim is fourfold: (1) to mathematically define the notion of plasmonic resonance and to analyze the shift and broadening of the plasmon resonance with changes in size and shape of the nanoparticles; (2) to study the scattering and absorption enhancements by plasmon resonant nanoparticles and express them in terms of the polarization tensor of the nanoparticle; (3) to derive optimal bounds on the enhancement factors; (4) to show, by analyzing the imaginary part of the Green function, that one can achieve super-resolution and super-focusing using plasmonic nanoparticles. For simplicity, the Helmholtz equation is used to model electromagnetic wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Math. & Appl., Volume 62, Springer, Berlin, 2008

  2. Ammari, H., Chow, Y.T., Liu, K., Zou, J.: Optimal shape design by partial spectral data. SIAM J. Sci. Compt., 37, B855–B883, 2015

  3. Ammari, H., Chow, Y., Zou, J.: Super-resolution in highly contrasted media from the perspective of scattering coefficients. J. Math. Pures Appl., (arXiv:1410.1253)

  4. Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of anomalous localized resonance II. Contemp. Math., 615, 1–14 (2014)

    Article  MATH  Google Scholar 

  5. Ammari H., Ciraolo G., Kang H., Lee H., Yun K.: Spectral analysis of the Neumann–Poincaré operator and characterization of the stress concentration in anti-plane elasticity. Arch. Ration. Mech. Anal., 208, 275–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ammari H., Deng Y., Millien P.: Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal., 220, 109–153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Sølna, K., Wang, H.: Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Mathematics, Volume 2098, Springer, Cham, 2013

  8. Ammari H., Iakovleva E., Lesselier D., Perrusson G.: MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput., 29, 674–709 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ammari H., Kang H., Lim M., Lee H.: Enhancement of near-cloaking. Part II: The Helmholtz equation. Comm. Math. Phys., 317, 485–502 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ammari H., Kang H., Lee H., Lim M., Yu S.: Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math., 73, 2055–2076 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ammari H., Ruiz M., Yu S., Zhang H.: Mathematical analysis of plasmonic resonances for nanoparticles: the full Maxwell equations. J. Differ. Equ., 261(3615–3669), 261 3615–3669 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Ammari H., Zhang H.: A mathematical theory of super-resolution by using a system of sub-wavelength Helmholtz resonators. Commun. Math. Phys., 337, 379–428 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ammari, H., Zhang, H.: Super-resolution in high contrast media. Proc. R. Soc. A, 2015(471), 20140946

  14. Ando K., Kang H.: Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann–Poincaré operator. J. Math. Anal. Appl., 435, 162–178 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ando K., Kang H., Liu H.: Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math., 76, 731–749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arhab, S., Soriano, G., Ruan, Y., Maire, G., Talneau, A., Sentenac, D., Chaumet, P.C., Belkebir, K., Giovannini, H.: Nanometric resolution with far-field optical profilometry. Phys. Rev. Lett., 111, 053902, 2013

  17. Baffou G., Girard C., Quidant R.: Mapping heat origin in plasmonic structures. Phys. Rev. Lett., 104, 136805 (2010)

    Article  ADS  Google Scholar 

  18. Bao G., Li P.: Near-field imaging of infinite rough surfaces. SIAM J. Appl. Math., 73, 2162–2187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bao G., Lin J.: Near-field imaging of the surface displacement on an infinite ground plane. Inverse Probl. Imaging, 7, 377–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bao G., Lin J., Triki F.: A multi-frequency inverse source problem. J. Diff. Equ., 249, 3443–3465 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bonnetier E., Triki F.: On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D. Arch. Ration. Mech. Anal., 209, 541–567 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge 1999

  23. Bonnet-Ben Dhia, A.S., Chesnel, L., Ciarlet, P.: T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM Math. Model. Numer. Anal. 46, 1363–1387, 2012

  24. Costabel M., Stephan E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grieser, D.: The plasmonic eigenvalue problem. Rev. Math. Phys. 26, 1450005, 2014

  26. Giannini R., Hafner C.V., Löffler J.F.: Scaling behavior of individual nanoparticle plasmon resonances. J. Phys. Chem. C, 119, 6138–6147 (2015)

    Article  Google Scholar 

  27. Jain P.K., Lee K.S., El-Sayed I.H., El-Sayed M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biomedical imaging and biomedicine. J. Phys. Chem. B, 110, 7238–7248 (2006)

    Article  Google Scholar 

  28. Kang H., Kim K., Lee H., Shin J.: Spectral properties of the Neumann–Poincaré operator and uniformity of estimates for the conductivity equation with complex coefficients. J. Lond. Math. Soc., 93, 519–546 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, H., Lim, M., Yu, S.: Spectral resolution of the Neumann–Poincaré operator on intersecting disks and analysis of plamson resonance. arXiv:1501.02952

  30. Kato, T.: Perturbation Theory for Linear Operators (2nd ed.), Springer-Verlag, Berlin 1980

  31. Khavinson D., Putinar M., Shapiro H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal., 185, 143–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668–677 (2003)

    Article  Google Scholar 

  33. Link S., El-Sayed M.A.: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 19, 409–453 (2000)

    Article  Google Scholar 

  34. Mayergoyz I.D., Fredkin D.R., Zhang Z.: Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B, 72, 155412 (2005)

    Article  ADS  Google Scholar 

  35. Mayergoyz I.D., Zhang Z.: Numerical analysis of plasmon resonances in nanoparticules. IEEE Trans. Mag., 42, 759–762 (2006)

    Article  ADS  Google Scholar 

  36. Miller, O.D., Hsu, C.W., Reid, M.T.H., Qiu, W., DeLacy, B.G., Joannopoulos, J.D., Soljacić, M., Johnson, S.G.: Fundamental limits to extinction by metallic nanoparticles. Phys. Rev. Lett., 112, 123903, 2014

  37. Nguyen H.-M.: Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients. J. Math. Pures Appl. 106, 342–374 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Palomba S., Novotny L., Palmer R.E.: Blue-shifted plasmon resonance of individual size-selected gold nanoparticles. Opt. Commun., 281, 480–483 (2008)

    Article  ADS  Google Scholar 

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press, New York 1970

  40. Sarid, D., Challener, W.A.: Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling, and Applications. Cambridge University Press, New York, 2010

  41. Scaffardi L.B., Tocho J.O.: Size dependence of refractive index of gold nanoparticles. Nanotechnology 17, 1309–1315 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ammari.

Additional information

Communicated by P. Rabinowitz

This work was supported by the ERC Advanced Grant Project MULTIMOD–267184. Hai Zhang was supported by Hong Kong RGC grant 26301016 and an initiation Grant IGN15SC05 from HKUST.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammari, H., Millien, P., Ruiz, M. et al. Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case. Arch Rational Mech Anal 224, 597–658 (2017). https://doi.org/10.1007/s00205-017-1084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1084-5

Navigation