Skip to main content

Advertisement

Log in

An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

An efficient and reproducible Agrobacterium-mediated transformation system via repetitive secondary somatic embryogenesis was developed for Rosa rugosa ‘Bao white’. Somatic embryogenesis was induced from in vitro-derived unexpanded leaflet explants on MS medium supplemented with 4.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.05 mg/L Kinetin and 30 g/L glucose. Secondary somatic embryos were successfully proliferated via cyclic secondary somatic embryogenesis on MS medium containing 1.0 mg/L 2,4-D, 0.01 mg/L 6-benzyladenine and 45 g/L glucose under light intensity of 500–1,000 lux. The highest germination rate (86.33 %) of somatic embryos was observed on 1/2-strength MS medium containing 1.0 mg/L BA. Relying on the repetitive secondary somatic embryogenesis and A. tumefaciens strain EHA105 harboring the binary vector pBI121, a stable and effective Agrobacterium-mediated transformation pattern was developed. The presented transformation protocol, in which somatic embryo clumps at globular stage (0.02–0.04 g) were infected by Agrobacterium for 60 min and co-cultivated for 2 days, and then selected under a procedure of 3 steps, were confirmed to be optional by GUS histochemical assay and Southern blot analysis. The procedure described here will be very useful for the introgression of desired genes into R. rugosa ‘Bao white’ and the molecular analysis of gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog (1976)

2,4-D:

2,4-Dichlorophenoxyacetic acid

TDZ:

Thidiazuron

BA:

6-Benzyladenine

NAA:

a-Naphthalene acetic acid

KT:

Kinetin

ABA:

Gibberellin

PGR:

Plant growth regulator

nptII :

Neomycin phosphotransferase

GUS:

β-Glucuronidase

Kan:

Kanamycin

Cef:

Cefotaxime

AS:

Acetosyringone

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  • An JH, Kim TI, Park HJ, Kim HM, Choi HJ, Lee TK (2011) Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κb pathway in RAW 264.7 macrophages. Int Immunopharmacol 11:504–510

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Liu GF, Shi XP, Xing W, Ning GG, Liu J, Bao MZ (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha’. Plant Cell Tissue Organ Cult 109:411–418

    Article  CAS  Google Scholar 

  • Dai JL, Tan X, Zhan YG, Zhang YQ, Xiao S, Gao Y, Dong WX, Wang T, Wang XC, You XL (2011) Rapid and repetitive plant regeneration of Aralia elata Seem. via somatic embryogenesis. Plant Cell Tissue Organ Cult 104:125–130

    Article  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2001) Transformation of roses with genes for antifungal protein. Acta Hortic 547:27–31

    CAS  Google Scholar 

  • Estabrooks T, Browne T, Dong ZM (2007) 2, 4, 5-Trichlorophenoxy-acetic acid promotes somatic embryogenesis in the rose cultivar‘Livin’ Easy’ (Rosa sp.). Plant Cell Rep 26:153–160

    Article  CAS  PubMed  Google Scholar 

  • Feng LG, Chen C, Sheng LX, Liu P, Tao J, Su JL, Zhao LY (2010) Comparative analysis of headspace volatiles of Chinese Rosa rugosa. Molecules 15:8390–8399

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium vectors for plant transformation. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: B-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Pratap PK, Sharma M, Ahuja PS (2006) Somatic embryogenesis from immature zygotic embryos of Rosa bourboniana Desp. In Vitro Cell Dev Biol Plant 42:124–127

    Article  CAS  Google Scholar 

  • Khan H, Siddique I, Anis M (2006) Thidiazuron induced somatic embryogenesis and plant regeneration in Capsicum annuum. Biol Plant 50:789–792

    Article  CAS  Google Scholar 

  • Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tissue Organ Cult 78:107–111

    Article  CAS  Google Scholar 

  • Kim SW, Oh JM, Liu JR (2009) Somatic embryogenesis and plant regeneration in zygotic embryo explant cultures of Rugosa rose. Plant Biotechnol Rep 3:199–203

    Article  Google Scholar 

  • Komatsuda T, Lee W, Oka S (1992) Maturation and germination of somatic embryos as affected by sucrose and plant growth regulators in soybeans Glycine gracilis Skvortz and Glycine max (L.) Merr. Plant Cell Tissue Organ Cult 28:103–113

    Article  CAS  Google Scholar 

  • Kunitake H, Imamizo H, Mii M (1993) Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci 90:187–194

    Article  CAS  Google Scholar 

  • Lee YH, Jung MG, Kang HB, Choi KC, Haam S, Jun W, Kim YJ, Cho HY, Yooh HG (2008) Effect of anti-histone acetyltransferase activity from Rosa rugosa Thunb. (Rosaceae) extracts on androgen receptor-mediated transcriptional regulation. J Ethnopharmacol 118:412–417

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Krasnyanski FS, Korban SS (2002a) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319

    Article  CAS  Google Scholar 

  • Li XQ, Krasnyanski FS, Korban SS (2002b) Optimization of the uidA gene transfer into somatic embryo of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453–459

    Article  CAS  Google Scholar 

  • Marchant R, Power JB, Lucas JA, Davey MR (1998) Biolistic transformation of rose (Rosa hybrida L.). Ann Bot 81:109–114

    Article  Google Scholar 

  • Mauri PV, Manzanera JA (2004) Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell Dev Biol Plant 40:495–498

    Article  CAS  Google Scholar 

  • Murali S, Sreedhar D, Lokeswari TS (1996) Regeneration through somatic embryogenesis from petal-derived calli of Rosa hybrida L. cv arizona (hybrid tea). Euphytica 91:271–275

    Article  Google Scholar 

  • Murashige T, Skoog F (1976) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

  • Ng TB, He JS, Niu SM, Zhao L, Pi ZF, Shao W, Liu F (2004) A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. J Pharm Pharmacol 56:537–545

    Article  CAS  PubMed  Google Scholar 

  • Ning GG, Xiao X, Lv HY, Li X, Zuo Y, Bao MZ (2012) Shortening tobacco life cycle accelerates functional gene identification in genomic research. Plant Biol 14:934–943

    Article  CAS  PubMed  Google Scholar 

  • Park JC, Kim SC, Choi MR, Song SH, Yoo EJ, Kim SH, Miyashro H, Hattori M (2005) Anti-HIV protease activity from rosa family plant extracts and rosamultin from Rosa rugosa. J Med Food 8:107–109

    Article  CAS  PubMed  Google Scholar 

  • Peña L, Pérez RM, Cervera M, Juárez JA, Navarro L (2004) Early events in Agrobacterium-mediated genetic transformation of Citrus explants. Ann Bot 94:67–74

    Article  PubMed  Google Scholar 

  • Pinto G, Silva S, Park YS, Neves L, Araujo C, Santos C (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult 95:69–78

    Article  CAS  Google Scholar 

  • Prange ANS, Serek M, Bartsch M, Winkelmann T (2010) Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis. Plant Cell Tiss Organ Cult 101:171–182

    Article  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Article  Google Scholar 

  • Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Bio 11:92. doi:10.1186/1471-2229-11-92

  • Sharma P, Pandey S, Bhattacharya A, Nagar PK, Ahuja PS (2004) ABA associated bio-chemical changes during somatic embryo development in Camellia sinensis (L.) O Kuntze. J Plant Physiol 161:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Shi XP, Dai XG, Liu GF, Zhang JW, Ning GG, Bao MZ (2010) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Biol Plant 46:117–125

    Article  CAS  Google Scholar 

  • Vergne P, Maene M, Guillaume G, Aurelie C, Debener T, Mohammed B (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tissue Organ Cult 100:73–81

    Article  Google Scholar 

  • Wang Z, Ye SF, Li JJ, Zheng B, Bao MZ, Ning GG (2011) Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotech 11:109

    Article  Google Scholar 

  • Xing W, Bao MZ, Qin HD, Ning GG (2010) Micropropagation of Rosa rugosa through axillary shoot proliferation. Acta Biol Cracov Bot 52:69–75

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31171985) and the National Science and Technology Ministry of China (No. 2011AA100208). We thank all the colleagues in our lab for constructive discussion and technical support. We are also grateful to Dr. Alex C. McCormac for critical editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guogui Ning.

Additional information

Communicated by S. Werbrouck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Bao, Y., Luo, P. et al. An efficient system to produce transgenic plants via cyclic leave-originated secondary somatic embryogenesis in Rosa rugosa . Acta Physiol Plant 36, 2013–2023 (2014). https://doi.org/10.1007/s11738-014-1578-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1578-9

Keywords

Navigation