Skip to main content
Log in

The use of the two T-DNA binary system to derive marker-free transgenic soybeans

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carrington, J.; Freed, D. Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J. Virol. 64:1590–1597; 1990.

    PubMed  CAS  Google Scholar 

  • Clemente, T.; LaVallee, B.; Howe, A.; Ward, D.; Rozman, R.; Hunter, P.; Broyles, D.; Kasten, D.; Hinchee, M. Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci. 40:797–803; 2000.

    Article  CAS  Google Scholar 

  • Dale, E.; Ow, D. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88:10558–10562; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Daley, M.; Knauf, V.; Summerfelt, K.; Turner, J. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 17:489–496; 1998.

    Article  CAS  Google Scholar 

  • De Block, M.; Debrouwer, D. Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium infection are mainly integrated at the same locus. Theor. Appl. Genet. 82:257–263; 1991.

    Article  Google Scholar 

  • Depicker, G.; Herman, L.; Jacobs, A.; Schell, J.; Van Montagu, M. Frequencies of simultaneous transformation with different T-DNAs and their relevance to Agrobacterium/plant cell interaction. Mol. Gen. Genet. 201:477–484; 1985.

    Article  CAS  Google Scholar 

  • Di, R.; Purcell, V.; Collins, G.; Ghabrial, S. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep. 15:746–750; 1996.

    Article  CAS  Google Scholar 

  • Ditta, G.; Stanfield, S.; Corbin, D.; Helinski, D. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77:7347–7351; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma, H.; Sugita, K.; Matsunaga, E.; Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA 94:2117–2121; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gallie, D.; Lucas, W.; Walbot, V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1:301–311; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Gleave, A.; Mitra, D.; Mudge, S.; Morris, B. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40:223–235; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough, A.; Lastrella, C.; Yoder, J. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technology 11:1286–1292; 1993.

    CAS  Google Scholar 

  • Hajdukiewicz, P.; Svab, Z.; Maliga, P. The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25:989–994; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hinchee, M.; Ward, D.; Newell, C.; McDonnell, R.; Sato, S.; Gasser, C.; Fischhoff, D.; Re, D.; Fraley, R.; Horsch, R. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–922; 1988.

    Article  CAS  Google Scholar 

  • Hood, E.; Helmer, G.; Fraley, R.; Chilton, M. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168:1291–1301; 1986.

    PubMed  CAS  Google Scholar 

  • Jefferson, R.; Kavanagh, T.; Bevan, M. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Komari, T.; Hiei, Y.; Saito, Y.; Murai, N.; Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165–174; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, P.; Scowcroft, W. Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214; 1981.

    Article  Google Scholar 

  • Malik, V.; Saroha, M. Marker gene controversy in transgenic plants. J. Plant Biochem. Biotechnol. 8:1–13; 1999.

    Google Scholar 

  • Matzke, M.; Matzke, A. How and why do plants inactivate homologous (trans) genes?. Plant Physiol. 107:679–685; 1995.

    PubMed  CAS  Google Scholar 

  • Maughan, P.; Philip, R.; Cho, M.; Widholm, J.; Vodkin, L. Biolistic transformation, expression, and inheritance of bovine β-casein in soybean (Glycine Max). In Vitro Cell. Dev. Biol. Plant 35:344–349; 1999.

    CAS  Google Scholar 

  • McCabe, D.; Swain, W.; Martinell, B.; Christou, P. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926; 1988.

    Article  Google Scholar 

  • McKnight, T.; Lillis, M.; Simpson, R. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8:439–445; 1987.

    Article  CAS  Google Scholar 

  • Mitsuhara, I.; Ugaki, M.; Hirochika, H.; Ohshima, M.; Murakami, T.; Gotoh, Y.; Katayose, Y.; Nakamura, S.; Honkura, R.; Nishimiya, S.; Ueno, K.; Mochizuki, A.; Tanimoto, H.; Tsugawa, H.; Otsuki, Y.; Ohashi, Y. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous, and monocytyledonous plants. Plant Cell Physiol. 37:49–59; 1996.

    PubMed  CAS  Google Scholar 

  • Santarém, E.; Finer, J. Transformation of soybean [Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell. Dev. Biol. Plant 35:451–455; 1999.

    Google Scholar 

  • Sleat, D.; Gallie, D.; Jefferson, R.; Bevan, M.; Turner, P.; Wilson, T. Characterization of the 5′-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 217:217–225; 1987.

    Article  Google Scholar 

  • Southern, E. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, C.; Adang, M.; All, J.; Boerma, R.; Cardineau, G.; Tucker, D.; Parrott, W. Genetic transformation, recovery, and characterization of fertile soybean [Glycine max (L.) Merrill] transgenic for a synthetic Bacillus thuringiensis CRY IA (c) gene. Plant Physiol. 112:121–129; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.; Movva, N.; Tichard, R.; Crameri, R.; Davies, J.; Lauwereys, M. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6:2519–2523; 1987.

    PubMed  CAS  Google Scholar 

  • Yoder, J.; Goldsbrough, A. Transformation systems for generating marker-free transgenic plants. Bio/Technology 12:263–267; 1994.

    Article  CAS  Google Scholar 

  • Zhang, Z.; Xing, A.; Staswick, P.; Clemente, T. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss. Organ Cult. 56:37–46; 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Clemente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, A., Zhang, Z., Sato, S. et al. The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell.Dev.Biol.-Plant 36, 456–463 (2000). https://doi.org/10.1007/s11627-000-0082-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0082-7

Key words

Navigation