Skip to main content
Log in

A surfactant tolerant laccase of Meripilus giganteus

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A laccase (Lcc1) from the white-rot fungus Meripilus giganteus was purified with superior yields of 34% and 90% by conventional chromatography or by foam separation, respectively. Size exclusion chromatography (SEC) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) yielded a molecular mass of 55 kDa. The enzyme possessed an isoelectric point of 3.1 and was able to oxidize the common laccase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at a pH of 2.0, whereas the enzyme was still able to oxidize ABTS and 2,6-dimethoxyphenol (DMP) at pH 6.0. Lcc1 exhibited low K m values of 8 μM (ABTS) and 80 μM (DMP) and remarkable catalytic efficiency towards the non-phenolic substrate ABTS of 37,437 k cat/k m (s−1 mM−1). The laccase showed a high stability towards high concentrations of various metal ions, EDTA and surfactants indicating a considerable biotechnological potential. Furthermore, Lcc1 exhibited an increased activity as well as a striking boost of stability in the presence of surfactants. Degenerated primers were deduced from peptide fragments. The complete coding sequence of lcc1 was determined to 1,551 bp and confirmed via amplification of the 2,214 bp genomic sequence which included 12 introns. The deduced 516 amino acid (aa) sequence of the lcc1 gene shared 82% identity and 90% similarity with a laccase from Rigidoporus microporus. The sequence data may aid theoretical studies and enzyme engineering efforts to create laccases with an improved stability towards metal ions and bipolar compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn T, Yim SK, Choi HI, Yun CH (2001) Polyacrylamide gel electrophoresis without a stacking gel: use of amino acids as electrolytes. Anal Biochem 291:300–303

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    Article  CAS  Google Scholar 

  • Bonomo RP, Boudet AM, Cozzolino R, Rizzarelli E, Santoro AM, Sterjiades R, Zappalà R (1998) A comparative study of two isoforms of laccase secreted by the “white-rot” fungus Rigidoporus lignosus, exhibiting significant structural and functional differences. J Inorg Biochem 71:205–211

    Article  CAS  Google Scholar 

  • Camarero S, Cañas AI, Nousiainen P, Record E, Lomascolo A, Martínez MJ, Martínez ÁT (2008) p-Hydroxycinnamic acids as natural mediators for laccase oxidation of recalcitrant compounds. Environ Sci Technol 42:6703–6709

    Article  CAS  Google Scholar 

  • Champagne PP, Nesheim ME, Ramsay JA (2010) Effect of a non-ionic surfactant, Merpol, on dye decolorization of Reactive blue 19 by laccase. Enzyme Microb Technol 46:147–152

    Article  CAS  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  Google Scholar 

  • Dittmer NT, Kanost MR (2010) Insect multicopper oxidases: diversity, properties, and physiological roles. Insect Biochem Mol Biol 40:179–188

    Article  CAS  Google Scholar 

  • Eggert C, LaFayette PR, Temp U, Eriksson KEL, Dean JFD (1998) Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 64:1766–1772

    CAS  Google Scholar 

  • Eisele N, Linke D, Bitzer K, Na’amnieh S, Nimtz M, Berger RG (2011) The first characterized asparaginase from a basidiomycete, Flammulina velutipes. Bioresour Technol 102:3316–3321

    Article  CAS  Google Scholar 

  • Elegir G, Daina S, Zoia L, Bestetti G, Orlandi M (2005) Laccase mediator system: oxidation of recalcitrant lignin model structures present in residual kraft lignin. Enzyme Microb Technol 37:340–346

    Article  CAS  Google Scholar 

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    CAS  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  Google Scholar 

  • Hirai H, Nakanishi S, Nishida T (2004) Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi. Chemosphere 55:641–645

    Article  CAS  Google Scholar 

  • Ibrahim V, Mendoza L, Mamo G, Hatti-Kaul R (2011) Blue laccase from Galerina sp.: properties and potential for Kraft lignin demethylation. Process Biochem 46:379–384

    Article  CAS  Google Scholar 

  • Ji GL, Zhang HB, Huang F, Huang XR (2009) Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. J Environ Sci (China) 21:1486–1490

    Article  CAS  Google Scholar 

  • Junghanns C, Pecyna MJ, Böhm D, Jehmlich N, Martin C, von Bergen M, Schauer F, Hofrichter M, Schlosser D (2009) Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5–1-03. Appl Microbiol Biotechnol 84:1095–1105

    Article  CAS  Google Scholar 

  • Kim EY, Chae HJ, Chu KH (2007) Enzymatic oxidation of aqueous pentachlorophenol. J Environ Sci (China) 19:1032–1036

    Article  CAS  Google Scholar 

  • Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224

    Article  CAS  Google Scholar 

  • Leonowicz A, Trojanowski J (1978) Induction of laccase in basidiomycetes: the laccase-coding messenger. Acta Biochim Pol 25:147–156

    CAS  Google Scholar 

  • Linke D, Berger RG (2011) Foaming of proteins: new prospects for enzyme purification processes. J Biotechnol 152:125–131

    Article  CAS  Google Scholar 

  • Linke D, Bouws H, Peters T, Nimtz M, Berger RG, Zorn H (2005) Laccases of Pleurotus sapidus: characterization and cloning. J Agric Food Chem 53:9498–9505

    Article  CAS  Google Scholar 

  • Linke D, Zorn H, Gerken B, Parlar H, Berger RG (2007) Laccase isolation by foam fractionation-new prospects of an old process. Enzyme Microb Technol 40:273–277

    Article  CAS  Google Scholar 

  • Liu ZF, Zeng GM, Zhong H, Yuan XZ, Fu HY, Zhou MF, Ma XL, Li H, Li JB (2011) Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution. World J Microbiol Biotechnol, doi:10.1007/s11274-011-0806-3

  • Majcherczyk A, Johannes C, Huttermann A (1999) Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2, 2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) cation radical and dication. Appl Microbiol Biotechnol 51:267–276

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24

    Article  CAS  Google Scholar 

  • Sakurai A, Masuda M, Sakakibara M (2003) Effect of surfactants on phenol removal by the method of polymerization and precipitation catalysed by Coprinus cinereus peroxidase. J Chem Technol Biotechnol 78:952–958

    Article  CAS  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  • Shuttleworth KL, Postie L, Bollag JM (1986) Production of induced laccase by the fungus Rhizoctonia praticola. Can J Microbiol 32:867–870

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tonegawa M, Dec J, Bollag JM (2003) Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide. J Environ Qual 32:1222–1227

    Article  CAS  Google Scholar 

  • Ullrich R, Huong LM, Dung NL, Hofrichter M (2005) Laccase from the medicinal mushroom Agaricus blazei: production, purification and characterization. Appl Microbiol Biotechnol 67:357–363

    Article  CAS  Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76:733–743

    Article  CAS  Google Scholar 

  • Walker JRL, McCallion RF (1980) The selective inhibition of ortho- and para-diphenol oxidases. Phytochemistry 19:373–377

    Article  CAS  Google Scholar 

  • Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7608–7614

    Article  CAS  Google Scholar 

  • Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334:63–70

    CAS  Google Scholar 

Download references

Acknowledgments

Supported by the BMBF-Cluster Biokatalyse2021 and the Forschungskreis der Ernährungsindustrie e.V. (Bonn) through AIF and BMWi (AIF 15305 N, Oxidoreductases from Edible Mushrooms to Improve Bakery Goods).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, G., Krings, U., Nimtz, M. et al. A surfactant tolerant laccase of Meripilus giganteus . World J Microbiol Biotechnol 28, 1623–1632 (2012). https://doi.org/10.1007/s11274-011-0968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0968-z

Keywords

Navigation