Skip to main content
Log in

Batch Chromium(VI), Cadmium(II) and Lead(II) Removal from Aqueous Solutions by Horticultural Peat

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The selectivity and uptake capacity of horticultural peat available in Romania was evaluated with respect to the removal of Cd(II), Cr(VI) and Pb(II) ions from aqueous solution. The kinetics, sorption capacities, selectivity and pH dependence of sorption were determined. The influence of metal concentration in solution is discussed in the terms of Langmuir and Freundlich isotherm and constants. Sorption capacities increased with increasing metal concentration in solution. For solutions containing 300 mg/l of metal, the observed uptake capacities were 20 mg Cd(II)/g peat, 15 mg Cr(VI)/g peat and 30 mg Pb(II)/g peat. The study proved that horticultural peat is a suitable material for the removal of the studied heavy metal ions from aqueous solutions, achieving removal efficiencies higher than 90%, and could be considered as a potential material for treating effluent polluted with Cd(II), Cr(VI) and Pb(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, S. J. (1987). Equilibrium adsorption isotherms for peat. Fuel, 66, 1171–1175.

    Article  CAS  Google Scholar 

  • Brown, P. A., Gill, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34(16), 3907–3916.

    Article  CAS  Google Scholar 

  • Bunzl, K., Schmidt, W., & Sansoni, B. (1976). Kinetics of ion exchange in soil organic matter. IV Adsorption and desorption of Pb, Cu, Cd, Zn and Ca by peat. Journal of Soil Science, 27, 32–41.

    Article  CAS  Google Scholar 

  • Chaney, R. L., & Hundemann, P. T. (1979). Use of peat moss columns to remove cadmium from wastewater. Journal of the Water Pollution Control Federation, 51(1), 17–21.

    CAS  Google Scholar 

  • Chen, X. H., Gosset, T., & Thevenot, D. R. (1990). Batch copper ion binding and exchange properties of peat. Water Research, 24(2), 1463–1471.

    Article  CAS  Google Scholar 

  • Couillard, D. (1994). The use of peat in wastewater treatment. Water Research, 28(6), 1261–1274.

    Article  CAS  Google Scholar 

  • Coupal, B., & Lalancette, J. H. (1976). The treatment of wastewaters with peat moss. Water Research, 10, 1071–1076.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Tang, L., & Salvador, J. M. (1996). Copper adsorption by esterified and unesterified fractions of sphagnum peat moss and its different humic substances. Journal of Hazardous Materials, 48, 191–206.

    Article  CAS  Google Scholar 

  • Gosset, T., Trancart, J. L., & Thevenot, D. R. (1986). Batch metal removal by peat—Kinetics and thermodynamics. Water Research, 20(1), 21–26.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2004). Sorption of Cu(II) from aqueous solution by peat. Water, Air & Soil Pollution, 158(1), 77–97.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air & Soil Pollution, 141(1–4), 1–33.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1995). Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29(5), 1327–1332.

    Article  CAS  Google Scholar 

  • Lalancette, J. M., & Coupal, B. (1972). Recovery of mercury from polluted water through peat treatment. Proceedings of the Fifth International Peat Congress, Otaniem Finland, 213–218.

  • Levenspiel, O. (1974). Chemical reaction engineering. New Delhi, India: Willey East Priv.

    Google Scholar 

  • Malterer, T., Mc.Carthy, B., & Adams, R. (1996). Use of peat in waste treatment. Mining Engineering, 48, 53–56.

    CAS  Google Scholar 

  • McKay, G., & Porter, J. F. (1997). Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. Journal of Chemical Technology and Biotechnology, 69, 309–320.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Yamuna, R. T. (1992). Removal of Congo red from aqueous solutions by biogas waste slurry. Journal of Chemical Technology and Biotechnology, 53, 153–157.

    CAS  Google Scholar 

  • Poots, V. J. P., McKay, G., & Healy, J. J. (1976). The removal of acid dye from effluent using natural adsorbents: Peat. Water Research, 19, 869–873.

    Google Scholar 

  • Raji, C., & Anirudhan, S. (1998). Batch Cr(VI) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Research, 32(12), 3772–3780.

    Article  CAS  Google Scholar 

  • Sharma, D. C., & Forster, C. F. (1993). Removal of Cr(VI) using sphagnum moss peat. Water Research, 27(7), 1201–1208.

    Article  CAS  Google Scholar 

  • Viraraghavan, T., & Rao, G. A. (1993). Adsorption of cadmium and chromium from wastewater by peat. International Journal of Environmental Studies, 44, 9–27.

    Article  CAS  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division American Society of Civil Engineering, 89, 31–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Marañón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulmanu, M., Anger, I., Fernández, Y. et al. Batch Chromium(VI), Cadmium(II) and Lead(II) Removal from Aqueous Solutions by Horticultural Peat. Water Air Soil Pollut 194, 209–216 (2008). https://doi.org/10.1007/s11270-008-9709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9709-9

Keywords

Navigation