Skip to main content
Log in

Stochastic Aspects of Mass Transport in Gas Diffusion Layers

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The relationship between the 3D morphology of gas-diffusion layers (GDL) of HT-PEFCs and their functionality is analyzed. A stochastic model describing the microstructure of paper-type GDL is combined with the Lattice-Boltzmann method (LBM) to simulate gas transport within the GDL microstructure. Virtual 3D microstructures representing paper-type GDL are generated by a stochastic model, where the binder morphology is systematically modified. On these structures, single phase single component gas flow is computed by the LBM. Quality criteria evaluating the spatial homogeneity of gas supply are introduced and related to the binder morphology. The spatial homogeneity of the gas supply is analyzed by a parametrized stochastic model describing the gas flow at the exit of the GDL. This approach gives insight into the spatial structure of the gas flow at the GDL exit. The quality of gas supply is quantified by characterizing size and arrangement of regions with high gas supply. This stochastic gas flow model predicts the quality of gas supply for further binder morphologies. Analyzing the quality criteria and the stochastic evaluation of the spatial structure of the gas flow field at the GDL exit, it is found that the binder morphology has an essential influence on the gas supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Baumeier, B., Stenzel, O., Poelking, C., Andrienko, D., Schmidt, V.: Stochastic modeling of molecular charge transport networks. Phys. Rev. B 86, 184,202 (2012)

    Article  Google Scholar 

  • Becker, J., Flückiger, R., Reum, M., Büchi, F.N., Marone, F., Stampanoni, M.: Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy. J. Electrochem. Soc. 156, B1175–B1181 (2009)

    Article  Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  Google Scholar 

  • Chen, L., Cao, T.F., Li, Z.H., He, Y.L., Tao, W.Q.: Numerical investigation of liquid water distribution in the cathode side of proton exchange membrane fuel cell and its effects on cell performance. Int. J. Hydrog. Energy 37, 9155–9170 (2012)

    Article  Google Scholar 

  • Chen, L., Luan, H.B., He, Y.L., Tao, W.Q.: Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 51, 132–144 (2012)

    Article  Google Scholar 

  • Chippar, P., Ju, H.: Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (pbi) membrane fuel cell. Solid State Ion. 225, 30–39 (2012)

    Article  Google Scholar 

  • Daino, M.M., Kandlikar, S.G.: 3d phase-differentiated gdl microstructure generation with binder and ptfe distributions. Int. J. Hydrog. Energy 37, 5180–5189 (2012)

    Article  Google Scholar 

  • Froning, D., Brinkmann, J., Reimer, U., Schmidt, V., Lehnert, W., Stolten, D.: 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method. Electrochimica Acta 110, 325–334 (2013). doi:10.1016/j.electacta.2013.04.071

    Google Scholar 

  • Gao, Y., Zhang, X.X., Rama, P., Liu, Y., Chen, R., Ostadi, H., Jiang, K.: Modeling fluid flow in the gas diffusion layers in pemfc using the multiple relaxation-time Lattice Boltzmann method. Fuel Cells 12, 365–381 (2012)

    Article  Google Scholar 

  • Gostick, J.T., Fowler, M.W., Ioannidis, M.A., Pritzker, M.D., Volfkovich, Y.M., Sakars, A.: Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells. J. Power Sourc. 156, 375–387 (2006)

    Article  Google Scholar 

  • Gostick, J.T., Fowler, M.W., Pritzker, M.D., Ioannidis, M.A., Behra, L.M.: In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J. Power Sourc. 162, 228–238 (2006)

    Article  Google Scholar 

  • Hänel, D.: Molekulare Gasdynamik. Springer, Berlin (2004)

    Google Scholar 

  • Hao, L., Cheng, P.: Lattice boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers. J. Power Sourc 186, 104–114 (2009)

    Article  Google Scholar 

  • Hao, L., Cheng, P.: Lattice boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J. Power Sourc. 186, 435–446 (2009)

    Article  Google Scholar 

  • Hartnig, C., Jörissen, L., Kerres, J., Lehnert, W., Scholta, J.: Polymer electrolyte fuel cells. In: Gasik, M. (ed.) Materials for Fuel Cells, 1st edn, pp. 101–184. Woodhead publishing, Cambridge (2008)

    Chapter  Google Scholar 

  • Herwig, H.: Strömungsmechanik A–Z, 1st edn. Vieweg, Wiesbaden (2004)

    Google Scholar 

  • Hussaini, I.S., Wang, C.Y.: Measurement of relative permeability of fuel cell diffusion media. J. Power Sourc. 195, 3830–3840 (2010)

    Article  Google Scholar 

  • Hyman, J.D., Smolarkiewicz, P.K., Winter, C.L.: Heterogeneities of flow in stochastically generated porous media. Phys. Rev. E 86, 056701 (2012)

    Article  Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester (2008)

    Google Scholar 

  • James, J.P., Choi, H.W., Pharoah, J.G.: X-ray computed tomography reconstruction and analysis of polymer electrolyte membrane fuel cell porous transport layers. Int. J. Hydrog. Energy 37, 18216–18230 (2012)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54(1), 406–410 (1996)

    Article  Google Scholar 

  • Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319–3325 (1997)

    Article  Google Scholar 

  • Manke, I., Hartnig, C., Grünerbel, M., Lehnert, W., Kardjilov, N., Haibel, A., Hilger, A., Banhart, J., Riesemeier, H.: Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography. Appl. Phys. Lett. 90, 174105 (2007)

    Article  Google Scholar 

  • Mukherjee, P.P., Coel, J.V., Jain, K., Gidwani, A.: Lattice boltzmann simulations of multiphase flows in pem fuel cell gdls and micro-channels. ECS Trans. 16, 67–77 (2008)

    Article  Google Scholar 

  • Niu, X.D., Munekata, T., Hyodo, S.H., Suga, K.: An investigation of water–gas transport processes in the gas-diffusion layer of a pem fuel cell by a multiphase multi-relaxation-time Lattice Boltzmann model. J. Power Sourc. 172, 542–552 (2007)

    Article  Google Scholar 

  • O’Hayre, R.P., Cha, S.W., Colella, W.G., Prinz, F.B.: Fuel Cell Fundamentals, 2nd edn. Wiley, New York (2009)

    Google Scholar 

  • Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70, 066135 (2004)

    Article  Google Scholar 

  • Olesen, A.C., Berning, T., Kær, S.K.: The effect of inhomogeneous compression on water transport in the cathode of a proton exchange membrane fuel cell. J. Fuel Cell Sci. Technol. 9, 031,010-1– 031,010-7 (2012).

    Google Scholar 

  • Ostadi, H., Rama, P., Liu, Y., Chen, R., Zhang, X., Jiang, K.: Nanotomography based study of gas diffusion layers. Microelectron. Eng. 87, 1640–1642 (2010)

    Article  Google Scholar 

  • Ostadi, H., Rama, P., Liu, Y., Chen, R., Zhang, X.X., Jiang, K.: 3d reconstruction of a gas diffusion layer and a microporous layer. J. Membr. Sci. 351, 69–74 (2010)

    Article  Google Scholar 

  • Pant, L.M., Mitra, S.K., Secanell, M.: Absolute permeability and knudsen diffusivity measurements in pemfc gas diffusion layers and micro porous layers. J. Power Sourc. 206, 153–160 (2012)

    Article  Google Scholar 

  • Parikh, N., Allen, J.S., Yassar, R.S.: Microstructure of gas diffusion layers for pem fuel cells. Fuel Cells 12, 382–390 (2012)

    Article  Google Scholar 

  • Pasaogullari, U., Wang, C.Y., Chen, K.S.: Two-phase transport in polymer electrolyte fuel cells with bilayer cathode gas diffusion media. J. Electrochem. Soc. 152, A1574–A1582 (2005)

    Article  Google Scholar 

  • Poornesh, K.K., Sohn, Y.J., Park, G.G., Yan, T.H.: Gas-diffusion layer’s structural anisotropy induced localized instability of nafion membrane in polymer electrolyte fuel cell. Int. J. Hydrog. Energy 37, 15339–15349 (2012)

    Article  Google Scholar 

  • Rama, P., Liu, Y., Chen, R., Ostadi, H., Jiang, K., Zhang, X., Gao, Y., Grassini, P., Brivio, D.: Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through x-ray computer micro-tomography and single-phase Lattice Boltzmann simulation. Int. J. Numer. Methods Fluids 67, 518–530 (2011)

    Article  Google Scholar 

  • Rama, P., Liu, Y., Ostadi, H., Jiang, K., Gao, Y., Zhang, X., Fisher, R., Jeschke, M.: Multiscale modeling of single-phase multicomponent transport in the cathode gas diffusion layer of a polymer electrolyte fuel cell. Energy Fuels 24, 3130–3143 (2010)

    Article  Google Scholar 

  • Sachs, L.: Angewandte Statistik. Springer, Berlin (2004)

    Book  Google Scholar 

  • Sasabe, T., Deevanhxay, P., Tsushima, S., Hirai, S.: Investigation on the effect of microstructure of proton exchange membrane fuel cell porous layers on liquid water behavior by soft x-ray radiography. J. Power Sourc. 196, 8197–8206 (2011)

    Article  Google Scholar 

  • Schladitz, K., Peters, S., Reinel-Blitzer, D., Wiegmann, A., Ohser, J.: Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput. Mater. Sci. 38, 56–66 (2006)

    Article  Google Scholar 

  • Schulz, V.P., Becker, J., Wiegmann, A., Mukherjee, P.P., Wang, C.Y.: Modeling of two-phase behavior in the gas diffusion medium of pefcs via full morphology approach. J. Electrochem. Soc. 154, B419–B426 (2007)

    Article  Google Scholar 

  • Stenzel, O., Koster, L.J.A., Thiedmann, R., Oosterhout, S.D., Janssen, R.A.J., Schmidt, V.: A new approach to model-based simulation of disordered polymer blend solar cells. Adv. Funct. Mater. 22, 1236–1244 (2012)

    Article  Google Scholar 

  • Stenzel, O., Westhoff, D., Manke, I., Kasper, M., Kroese, D.P., Schmidt, V.: Graph-based simulated annealing: a hybrid approach to stochastic modeling of complex microstructures. Modell. Simul. Mater. Sci. Eng. 21, 055004 (2013)

    Article  Google Scholar 

  • Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications. Wiley, Chichester (1995)

    Google Scholar 

  • Succi, S.: The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Tamayol, A., McGregor, F., Bahrami, M.: Single phase through-plane permeability of carbon paper gas diffusion layers. J. Power Sourc. 204, 94–99 (2012)

    Article  Google Scholar 

  • Thiedmann, R., Fleischer, F., Hartnig, C., Lehnert, W., Schmidt, V.: Stochastic 3D modeling of the gdl structure in PEMFCs based on thin section detection. J. Electrochem. Soc. 155(4), B391–B399 (2008)

    Article  Google Scholar 

  • Thiedmann, R., Hartnig, C., Manke, I., Schmidt, V., Lehnert, W.: Local structural characteristics of pore space in gdls of pem fuel cells based on geometric 3D graphs. J. Electrochem. Soc. 156(11), B1339–B1347 (2009)

    Article  Google Scholar 

  • Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications. Springer, Heidelberg (1997)

    Google Scholar 

  • Wang, Y., Chen, K.S.: Modeling of polymer electrolyte membrane fuel-cell components. In: Stolten, D., Emonts, B. (eds.) Fuel Cell Science and Engineering, 1st edn, pp. 839–878. WILEY-VCH, Weinheim (2012)

    Chapter  Google Scholar 

  • Wang, Y., Cho, S., Thiedmann, R., Schmidt, V., Lehnert, W., Feng, X.: Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells. Int. J. Heat Mass Transfer 53, 1128–1138 (2010)

    Article  Google Scholar 

  • Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models. Springer, Berlin (2000)

    Book  Google Scholar 

  • Zamel, N., Li, X., Becker, J., Wiegmann, A.: Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 36(9), 5466–5478 (2011). doi:10.1016/j.ijhydene.2011.01.146

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the German Federal Ministry of Education and Research Grant 03MS507. The transport simulations are running on hardware of the Jülich Supercomputing Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Froning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Froning, D., Gaiselmann, G., Reimer, U. et al. Stochastic Aspects of Mass Transport in Gas Diffusion Layers. Transp Porous Med 103, 469–495 (2014). https://doi.org/10.1007/s11242-014-0312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0312-9

Keywords

Navigation