Skip to main content
Log in

Recent Advances and Perspectives of CFD–DEM Simulation in Fluidized Bed

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The coupling of computational fluid dynamics (CFD) and discrete element method (DEM) has become an important method for studying dense fluidized beds. Since DEM can track the motion behavior of each particle individually and CFD can qualitatively and quantitatively describe the fluid evolution process, the discussion of fluidized beds using CFD–DEM method has been realized from small scale to laboratory scale and even extended to large engineering scale. This work presents a comprehensive review of the application of coupled CFD–DEM methods in fluidized beds and identifies the issues that need to be addressed. The detailed analysis is summarized mainly from the definition of particle flow system, DEM modeling theory (particle–fluid interaction and integration scheme of particle motion information, etc.), CFD modeling theory (discussion of turbulence model) and CFD–DEM coupled mapping methods (including Unresolved CFD–DEM and Resolved CFD–DEM). Existing studies have verified from multi-scales that the coupled CFD–DEM approach is reliable for predicting particle motion in fluidized beds. The findings are summarized and discussed, and future developments and challenges are highlighted. This work will provide theoretical guidance for subsequent researchers using the coupled CFD–DEM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Abbreviations

\(A^{\prime}\) :

Projected area of particles

\({\varvec{a}}_{n}\) :

Acceleration of current time

\({\varvec{a}}_{r}\) :

Relative acceleration

\(B\) :

Magnetic field intensity

\(C_{D}\) :

Drag coefficient

\(\hat{C}_{H}\) :

Damping coefficient

\(C_{n}\) :

Normal damping coefficient

\(E\) :

Electric field intensity

\(E_{n}\) :

Young's modulus

\({\varvec{F}}_{Vol}\) :

Body force

\({\varvec{F}}_{Sur}\) :

Surface force

\({\varvec{F}}_{gra}\) :

Gravitational force

\({\varvec{F}}_{mag}\) :

Magnetic force

\({\varvec{F}}_{bou}\) :

Buoyancy force

\({\varvec{F}}_{ele}\) :

Electrical charge force

\({\varvec{F}}_{ij}^{n}\) :

Normal contact force

\({\varvec{F}}_{ij}^{t}\) :

Tangential contact force

\({\varvec{F}}_{Van}\) :

Van der waals

\({\varvec{F}}_{Saf}\) :

Saffman force

\({\varvec{F}}_{Cap}\) :

Capillary liquid bridge force

\({\varvec{F}}_{Lap}\) :

Laplace term

\({\varvec{F}}_{Ten}\) :

Surface tension term

\(f_{grid}^{i}\) :

Volume fraction of particle i

\(H_{1}\) :

Stokes' shape factor

\(H_{2}\) :

Newton's shape factor

\(K_{nl}\) :

Normal contact stiffness

\(K_{\tau }\) :

Loading normal stiffness

\(\hat{K}_{H}\) :

Stiffness coefficient

\(m_{i}\) :

Mass of particle i

\(m_{pw}\) :

Mass of particles in contact with wall

\(m_{pi}\) :

Mass of contact particles

\({\varvec{n}}\) :

Unit normal vector

\(p\) :

Fluid pressure

\(q\) :

Electric charge force

\(Re\) :

Reynolds number

\(Re_{\Omega }\) :

Eddy Reynolds number

\(r^{ * }\) :

Effective radius

\(r_{ij}\) :

Relative radius

\(r_{con}\) :

Contact radius

\(s_{\tau }\) :

Relative movement of contact points

\(s_{n}\) :

Normal overlap volume

\({\varvec{u}}_{f}\) :

Fluid velocity

\(V_{grid}\) :

Grid volume

\(V_{pi}\) :

Volume of the particle

\({\varvec{v}}_{n}\) :

Particle velocity of current time

\(W\) :

Adsorption power per unit area

\({\varvec{x}}_{n}\) :

Position of current time

\(\Delta t\) :

Time step

\(\nabla p\) :

Local pressure gradient

\(\Delta L\) :

Grid size

\(\Delta {\varvec{s}}_{\tau }\) :

Tangential relative movement in unit time step

\(\Delta V_{j}\) :

Lumped volume associated with point j

\(\alpha_{f}\) :

Fluid volume fraction

\(\alpha_{i}\) :

Volume fraction of particles

\(\delta_{ij}\) :

Kronecker function

\(\varepsilon\) :

Restitution coefficient of the material

\(\eta_{\tau }\) :

Tangential damping ratio

\(\tau\) :

Stokes relaxation time

\(\tau_{f}\) :

Viscous stress tensor

\(\tilde{\boldsymbol{\tau }}_{ij}\) :

Viscous stress tensor

\(\tilde{\boldsymbol{\tau }}_{ij}^{SGS}\) :

Subgrid stress term

\(\nu_{n}\) :

Poisson's ratio

\(\mu_{f}\) :

Fluid shear viscosity

\(\vartheta\) :

Friction coefficient

\(\rho_{f}\) :

Fluid density

\(\sigma_{k}\) :

Turbulent Prandtl number

\({\varvec{\omega}}\) :

Angular velocity

CFD:

Computational fluid dynamics

DEM:

Discrete element method

TFM:

Two fluid model

DNS:

Direct numerical simulation

TPM:

Two phase model

LES:

Large eddy simulation

RANS:

Reynold average Navier–Stokes equations

PCM:

Particle center method

DPVM:

Dividing particle volume method

SPM:

Satellite point method

MCM:

Monte Carlo methods

SKM:

Statistical kernel method

DGM:

Dual grid method

PM:

Porous method

DM:

Diffusion method

SPH:

Smooth particle dynamics

References

  1. Figaro S et al (2017) Optimizing the fluidized bed bioreactor as an external bioartificial liver (in English). Int J Artif Organs 40(4):196–203

    Article  CAS  PubMed  Google Scholar 

  2. Naghib SD et al (2017) Expansion properties of alginate beads as cell carrier in the fluidized bed bioartificial liver (in English). Powder Technol 316:711–717

    Article  CAS  Google Scholar 

  3. Rüdisüli M, Schildhauer TJ, Biollaz SMA, van Ommen JR (2012) Scale-up of bubbling fluidized bed reactors—a review. Powder Technol 217:21–38

    Article  Google Scholar 

  4. Cocco R, Karri SBR, Knowlton T (2014) Introduction to fluidization (in English). Chem Eng Prog 110(11):21–29

    Google Scholar 

  5. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies (in English). Fuel Process Technol 90(1):21–50

    Article  CAS  Google Scholar 

  6. Alobaid F (2013) 3D modelling and simulation of reactive fluidized beds for conversion of biomass with discrete element method. Technische Universität Darmstadt, 2013

  7. Loha C, Gu S, De Wilde J, Mahanta P, Chatterjee PK (2014) Advances in mathematical modeling of fluidized bed gasification. Renew Sustain Energy Rev 40:688–715

    Article  CAS  Google Scholar 

  8. Wang S, Luo K, Yang S, Hu C, Fan J (2017) LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB. Chem Eng J 313:858–872

    Article  CAS  Google Scholar 

  9. Ranjith PG, Perera MSA, Perera WKG, Choi SK, Yasar E (2014) Sand production during the extrusion of hydrocarbons from geological formations: a review. J Petrol Sci Eng 124:72–82

    Article  CAS  Google Scholar 

  10. Seidy Esfahlan M, Khodapanah E, Tabatabaei-Nezhad SA (2021) Comprehensive review on the research and field application of preformed particle gel conformance control technology. J Petrol Sci Eng 202: 108440

    Article  CAS  Google Scholar 

  11. Wang H et al (2022) Pressure drop model and jet features of ultra high pressure water jet for downhole intensifier. J Energy Resour Technol 144(12): 123005

    Article  CAS  Google Scholar 

  12. Houssais M, Ortiz CP, Durian DJ, Jerolmack DJ (2015) Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat Commun 6:6527

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Ferdowsi B, Ortiz CP, Houssais M, Jerolmack DJ (2017) River-bed armouring as a granular segregation phenomenon. Nat Commun 8(1):1363

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. Houssais M, Ortiz CP, Durian DJ, Jerolmack DJ (2016) Rheology of sediment transported by a laminar flow. Phys Rev E 94(6–1):062609

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Carvalho DD, Franklin EM (2022) Collaborative behavior of intruders moving amid grains. Phys Fluids 34(12): 123306

    Article  ADS  Google Scholar 

  16. Vanamu J, Sahoo A (2022) An overview on dry powder coating in advancement to electrostatic dry powder coating used in pharmaceutical industry. Powder Technol 399

  17. Suresh P, Sreedhar I, Vaidhiswaran R, Venugopal A (2017) A comprehensive review on process and engineering aspects of pharmaceutical wet granulation. Chem Eng J 328:785–815

    Article  CAS  Google Scholar 

  18. Geldart D (1973) Types of gas fluidization. Powder Technol 7(5):285–292

    Article  CAS  Google Scholar 

  19. Ma H, Zhou L, Liu Z, Chen M, Xia X, Zhao Y (2022) A review of recent development for the CFD–DEM investigations of non-spherical particles. Powder Technol 412: 117972

    Article  CAS  Google Scholar 

  20. Zhou L et al (2022) CFD–DEM study of gas–solid flow characteristics in a fluidized bed with different diameter of coarse particles. Energy Rep 8:2376–2388

    Article  Google Scholar 

  21. Rauchenzauner S, Schneiderbauer S (2020) A dynamic spatially averaged two-fluid model for heat transport in moderately dense gas–particle flows. Phys Fluids 32(6): 063307

    Article  CAS  ADS  Google Scholar 

  22. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  23. Deen NG, Van Sint Annaland M, Van der Hoef MA, Kuipers JAM (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1–2):28–44

    Article  CAS  Google Scholar 

  24. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Ind Eng Chem Fundam 6(4):527–539

    Article  CAS  Google Scholar 

  25. Collevecchio A, König W, Mörters P, Sidorova N (2010) Phase transitions for dilute particle systems with Lennard–Jones potential. Commun Math Phys 299(3):603–630

    Article  MathSciNet  ADS  Google Scholar 

  26. Fuji M et al (2007) Fabrication of cordierite filter by in-situ solidification for high temperature dust collection. Powder Technol 172(1):57–62

    Article  MathSciNet  CAS  Google Scholar 

  27. Klenov OP, Noskov AS, Parahin OA (2017) Investigation of behaviors of the circulating fluidized bed. Chem Eng J 329:66–76

    Article  CAS  Google Scholar 

  28. Ren B, Zhong W, Jin B, Yuan Z, Lu Y (2011) Modeling of gas–particle turbulent flow in spout-fluid bed by computational fluid dynamics with discrete element method. Chem Eng Technol 34(12):2059–2068

    Article  CAS  Google Scholar 

  29. Rong WJ, Li BK, Feng YQ (2022) The development and application of a TFM for dense particle flow and mixing in rotating drums (in English). Processes 10(2): 234

    Article  CAS  Google Scholar 

  30. Tsekos C, de Voogt D, de Jong W, Padding JT (2022) Two phase modelling of Geldart B particles in a novel indirectly heated bubbling fluidized bed biomass steam reformer (in English). Chem Eng J 439: 135681

    Article  CAS  Google Scholar 

  31. Adnan M, Sun J, Ahmad N, Wei JJ (2022) Validation and sensitivity analysis of an Eulerian–Eulerian two-fluid model (TFM) for 3D simulations of a tapered fluidized bed (in English). Powder Technol 396:490–518

    Article  CAS  Google Scholar 

  32. Hoomans BPB, Kuipers JAM, Briels WJ, Swaaij WPMV (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach.pdf. Chem Eng Sci 51:99–118

    Article  CAS  Google Scholar 

  33. Tsuji Y (2007) Multi-scale modeling of dense phase gas–particle flow. Chem Eng Sci 62(13):3410–3418

    Article  CAS  Google Scholar 

  34. Elghobashi S (1991) Particleladen turbulent flowsdirect simulation and closure models. Appl Sci Res 48:301–314

    Article  Google Scholar 

  35. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329

    Article  Google Scholar 

  36. Khalde CM, Samad A, Sangwai JS (2019) Computational and experimental study of sand entrapment in a hydrocyclone during desanding operations in oil fields: consequences for leakage and separation efficiency (in English). SPE Prod Oper 34(3):520–535

    CAS  Google Scholar 

  37. Casas G, De-Pouplana I, Gandikota R, Onate E (2022) Numerical simulation of particle impact drilling (PID) systems: a one-way coupled approach (in English). Comput Part Mech 9(4):735–757

    Article  Google Scholar 

  38. El-Emam MA, Zhou L, Shi W, Han C (2021) Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter. Powder Technol 385:357–374

    Article  CAS  Google Scholar 

  39. Wang R-K, Zhu Z-C, Su X-H, Tang D-S, Jin X, Gruszczynski M (2022) Influence on the solid—liquid two-phase flow from cross-section area of slurry pumps for deep-sea mining. China Ocean Eng 36(3):439–450

    Article  ADS  Google Scholar 

  40. Jiang L, Bai L, Xue P, Peng G, Zhou L (2022) Two-way coupling simulation of solid-liquid two-phase flow and wear experiments in a slurry pump. J Mar Sci Eng 10(1): 57

    Article  MathSciNet  Google Scholar 

  41. Zhu M, Chen X, Zhou C-S, Xu J-S, Musa O (2020) Numerical study of micron-scale aluminum particle combustion in an afterburner using two-way coupling CFD–DEM approach. Flow Turbul Combust 105(1):191–212

    Article  CAS  Google Scholar 

  42. Peng ZB, Doroodchi E, Luo CM, Moghtaderi B (2014) Influence of void fraction calculation on fidelity of CFD–DEM simulation of gas–solid bubbling fluidized beds (in English). AIChE J 60(6):2000–2018

    Article  CAS  ADS  Google Scholar 

  43. Ostermeier P, Fischer F, Fendt S, DeYoung S, Spliethoff H (2019) Coarse-grained CFD–DEM simulation of biomass gasification in a fluidized bed reactor. Fuel 255: 115790

    Article  Google Scholar 

  44. Han C, Bai L, Zhou C, Sun W, Zhou L (2022) CFD–DEM simulation and experimental study of flow pattern transition in a rectangular spouted bed. Powder Technol 399: 117179

    Article  CAS  Google Scholar 

  45. Chu KW, Chen YX, Ji L, Zhou ZQ, Yu AB, Chen J (2022) Coarse-grained CFD–DEM study of gas–solid flow in gas cyclone (in English). Chem Eng Sci 260: 117906

    Article  CAS  Google Scholar 

  46. Vreman B, Geurts BJ, Deen NG, Kuipers JAM, Kuerten JGM (2008) Two- and four-way coupled Euler–Lagrangian large-eddy simulation of turbulent particle-laden channel flow. Flow Turbul Combust 82(1):47–71

    Article  Google Scholar 

  47. Ayeni OO, Wu CL, Nandakumar K, Joshi JB (2016) Development and validation of a new drag law using mechanical energy balance approach for DEM–CFD simulation of gas–solid fluidized bed. Chem Eng J 302:395–405

    Article  CAS  Google Scholar 

  48. O’Sullivan C (2011) Particle-based discrete element modeling: geomechanics perspective (in English). Int J Geomech 11(6):449–464

    Article  Google Scholar 

  49. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87

    Article  CAS  Google Scholar 

  50. Ye M, van der Hoef MA, Kuipers JAM (2004) A numerical study of fluidization behavior of Geldart A particles using a discrete particle model (in English). Powder Technol 139(2):129–139

    Article  CAS  Google Scholar 

  51. Feng YQ, Yu AB (2004) Assessment of model formulations in the discrete particle simulation of gas–solid flow (in English). Ind Eng Chem Res 43(26):8378–8390

    Article  CAS  Google Scholar 

  52. Fortin J, Millet O, de Saxce G (2005) Numerical simulation of granular materials by an improved discrete element method (in English). Int J Numer Methods Eng 62(5):639–663

    Article  Google Scholar 

  53. El-Emam MA, Zhou L, Shi W, Han C, Bai L, Agarwal R (2021) Theories and applications of CFD–DEM coupling approach for granular flow: a review. Arch Comput Methods Eng 28(7):4979–5020

    Article  MathSciNet  Google Scholar 

  54. He Y, Bayly AE, Hassanpour A (2018) Coupling CFD–DEM with dynamic meshing: a new approach for fluid-structure interaction in particle–fluid flows. Powder Technol 325:620–631

    Article  CAS  Google Scholar 

  55. Varas AEC, Peters EAJF (2017) CFD–DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics (in English). Chem Eng Sci 169:246–258

    Article  Google Scholar 

  56. Samiei K, Peters B, Bolten M, Frommer A (2013) Assessment of the potentials of implicit integration method in discrete element modelling of granular matter (in English). Comput Chem Eng 49:183–193

    Article  CAS  Google Scholar 

  57. O’Sullivan C, Bray JD (2004) Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme (in English). Eng Comput 21(2–4):278–303

    Article  Google Scholar 

  58. Washino K, Chan EL, Miyazaki K, Tsuji T, Tanaka T (2016) Time step criteria in DEM simulation of wet particles in viscosity dominant systems (in English). Powder Technol 302:100–107

    Article  CAS  Google Scholar 

  59. Otsubo M, O’Sullivan C, Shire T (2017) Empirical assessment of the critical time increment in explicit particulate discrete element method simulations (in English). Comput Geotech 86:67–79

    Article  Google Scholar 

  60. Ke T-C, Bray J (1995) Modeling of particulate media using discontinuous deformation analysis. J Eng Mech 121:1234–1243

    Article  Google Scholar 

  61. Jasion G, Shrimpton J, Danby M, Takeda K (2011) Performance of numerical integrators on tangential motion of DEM within implicit flow solvers (in English). Comput Chem Eng 35(11):2218–2226

    Article  CAS  Google Scholar 

  62. Tuley R, Danby M, Shrimpton J, Palmer M (2010) On the optimal numerical time integration for Lagrangian DEM within implicit flow solvers (in English). Comput Chem Eng 34(6):886–899

    Article  CAS  Google Scholar 

  63. Cromer A (1981) Stable solutions using the Euler approximation. Am J Phys 49(5):455–459

    Article  ADS  Google Scholar 

  64. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe. Powder Technol 71:239–250

    Article  CAS  Google Scholar 

  65. Taguchi Y-H (1992) Powder turbulence: direct onset of turbulent flow. J Phys II 2:2103–2114

    MathSciNet  CAS  Google Scholar 

  66. Kruggel-Emden H, Sturm M, Wirtz S, Scherer V (2008) Selection of an appropriate time integration scheme for the discrete element method (DEM) (in English). Comput Chem Eng 32(10):2263–2279

    Article  CAS  Google Scholar 

  67. Kwapinska M, Saage G, Tsotsas E (2006) Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes (in English). Powder Technol 161(1):69–78

    Article  CAS  Google Scholar 

  68. Dang HK, Meguid MA (2013) An efficient finite-discrete element method for quasi-static nonlinear soil–structure interaction problems (in English). Int J Numer Anal Methods Geomech 37(2):130–149

    Article  Google Scholar 

  69. Rougier E, Munjiza A, John NWA (2004) Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics (in English). Int J Numer Methods Eng 61(6):856–879

    Article  Google Scholar 

  70. Melheim JA (2005) Cluster integration method in Lagrangian particle dynamics (in English). Comput Phys Commun 171(3):155–161

    Article  MathSciNet  CAS  ADS  Google Scholar 

  71. Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods. Wiley, Chichester

    Google Scholar 

  72. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev 1:98–103

    Article  ADS  Google Scholar 

  73. Marshall JS (2009) Discrete-element modeling of particulate aerosol flows (in English). J Comput Phys 228(5):1541–1561

    Article  ADS  Google Scholar 

  74. Khakimov ZM (2002) New integrator for molecular dynamics simulations (in English). Comput Phys Commun 147(1–2):733–736

    Article  CAS  ADS  Google Scholar 

  75. Engeln-Müllges G, Uhlig F (1996) Numerical algorithms with fortran. Springer, Berlin

    Book  Google Scholar 

  76. Peters B, Dziugys A, Hunsinger H, Krebs L (2005) An approach to qualify the intensity of mixing on a forward acting grate (in English). Chem Eng Sci 60(6):1649–1659

    Article  CAS  Google Scholar 

  77. Norouzi HR, Zarghami R, Sotudeh-Gharebagh R, Mostoufi N (2016) Coupled CFD–DEM modeling: formulation, implementation and application to multiphase flows. Wiley, New York

    Book  Google Scholar 

  78. Zhao Z, Zhou L, Liu B, Cao W (2022) Computational fluid dynamics and experimental investigation of inlet flow rate effects on separation performance of desanding hydrocyclone. Powder Technol 402: 117363

    Article  CAS  Google Scholar 

  79. Yuanwen L, Shaojun L, Xiaozhou H (2019) Research on reflux in deep-sea mining pump based on DEM–CFD. Mar Georesour Geotechnol 38(6):744–752

    Article  Google Scholar 

  80. Bokkers GA, Annaland MVS, Kuipers JAM (2004) Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technol Artic Proc Paper 140(3):176–186

    Article  CAS  Google Scholar 

  81. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Discrete particle simulation of particle–fluid flow: model formulations and their applicability (in English). J Fluid Mech 661:482–510

    Article  MathSciNet  ADS  Google Scholar 

  82. Tang Y, Lau YM, Deen NG, Peters EAJF, Kuipers JAM (2016) Direct numerical simulations and experiments of a pseudo-2D gas-fluidized bed. Chem Eng Sci 143:166–180

    Article  CAS  Google Scholar 

  83. Luo K, Tan J, Wang Z, Fan J (2016) Particle-resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds. AIChE J 62(6):1917–1932

    Article  CAS  ADS  Google Scholar 

  84. Kriebitzsch SHL, van der Hoef MA, Kuipers JAM (2013) Fully resolved simulation of a gas-fluidized bed: a critical test of DEM models. Chem Eng Sci 91:1–4

    Article  CAS  Google Scholar 

  85. Drew DA (1983) Mathematical modeling of two-phase flow. Annu Rev Fluid Mech 15(1):261–291

    Article  MathSciNet  ADS  Google Scholar 

  86. Gui N, Yang X, Tu J, Jiang S (2018) A fine LES-DEM coupled simulation of gas-large particle motion in spouted bed using a conservative virtual volume fraction method. Powder Technol 330:174–189

    Article  CAS  Google Scholar 

  87. Wen X, Luo K, Luo Y, Kassem HI, Jin H, Fan J (2016) Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model. Appl Energy 183:1086–1097

    Article  CAS  ADS  Google Scholar 

  88. Gui N, Fan J (2009) Numerical simulation of pulsed fluidized bed with immersed tubes using DEM–LES coupling method. Chem Eng Sci 64(11):2590–2598

    Article  CAS  Google Scholar 

  89. Blais B, Bertrand F (2017) CFD–DEM investigation of viscous solid–liquid mixing: impact of particle properties and mixer characteristics. Chem Eng Res Des 118:270–285

    Article  CAS  Google Scholar 

  90. Cao W, Jia Z, Zhao Z, Zhou L (2022) Validation and simulation of cavitation flow in a centrifugal pump by filter-based turbulence model. Eng Appl Comput Fluid Mech 16(1):1724–1738

    Google Scholar 

  91. Zhao Z et al (2020) Hydrocyclone separation performance influenced by feeding solid concentration and correcting separation size. Heat Mass Transf 57(1):63–76

    Article  MathSciNet  ADS  Google Scholar 

  92. Ku XK, Li T, Lovas T (2015) CFD–DEM simulation of biomass gasification with steam in a fluidized bed reactor (in English). Chem Eng Sci 122:270–283

    Article  CAS  Google Scholar 

  93. Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech 68(3):537–566

    Article  ADS  Google Scholar 

  94. Wan G, Sun G, Xue X, Shi M (2008) Solids concentration simulation of different size particles in a cyclone separator. Powder Technol 183(1):94–104

    Article  CAS  Google Scholar 

  95. El-Emam MA, Shi W, Zhou L (2019) CFD–DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter. Adv Powder Technol 30(11):2686–2702

    Article  CAS  Google Scholar 

  96. Andersson B, Andersson R, Hakansson L, Hakansson L, Sudiyo R, Wachem BV (2012) Computational fluid dynamics for engineers. Cambridge University Press, New York

    Google Scholar 

  97. Sun W, Yu Z (2023) A novel correlation of bubble aspect ratio through analysis of gas/shear-thinning liquid two-phase flow in a bubble column. Exp Therm Fluid Sci 149

  98. Tiwari SS et al (2020) Flow past a single stationary sphere, 2. Regime mapping and effect of external disturbances. Powder Technol 365:215–243

    Article  CAS  Google Scholar 

  99. S. L, N. Z (1935) A drag coefficient correlation. Z Ver Deutsch Ing 77:318–320

  100. DallaValle JM (1948) Micromeritics: the technology of fine particles. Pitman Publishing corporation, New York

    Google Scholar 

  101. Turton R, Levenspiel O (1986) A short note on the drag correlation for spheres. Powder Technol 47(1):83–86

    Article  CAS  Google Scholar 

  102. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55(2):193–208

    Article  ADS  Google Scholar 

  103. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58(1):63–70

    Article  CAS  Google Scholar 

  104. Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77(2):143–152

    Article  CAS  Google Scholar 

  105. Prasad VR, Silva V, Cardoso J (2023) Boundary layer flows. IntechOpen, Rijeka

    Google Scholar 

  106. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    CAS  Google Scholar 

  107. Cy W, Yh Y (1966) Mechanics of fluidisation. Chem Eng Prog Symp Ser 62:100–111

    Google Scholar 

  108. Gidaspow D, Bezburuah R, Ding J (1993) Hydrodynamics of circulating fluidized beds: kinetic theory approach. In: Presented at the Engineering foundation conference on fluidization, Australia

  109. Lu HL, Gidaspow D (2003) Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures (in English). Chem Eng Sci 58(16):3777–3792

    Article  CAS  Google Scholar 

  110. Felice RD (1994) The voidage function for fluid–particle interaction systems. Int J Multiph Flow 20(1):153–159

    Article  Google Scholar 

  111. Van Der Hoef MA, Beetstra R, Kuipers JAM (2005) Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J Fluid Mech 528:233–254

    Article  MathSciNet  ADS  Google Scholar 

  112. Benyahia S, Syamlal M, O’Brien TJ (2006) Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technol 162(2):166–174

    Article  CAS  Google Scholar 

  113. Koch DL, Hill RJ (2001) Inertial effects in suspension and porousmedia flow. Annu Rev Fluid Mech 33(1):619–647

    Article  ADS  Google Scholar 

  114. Mazzei L, Lettieri P (2007) A drag force closure for uniformly dispersed fluidized suspensions. Chem Eng Sci 62(22):6129–6142

    Article  CAS  Google Scholar 

  115. Cello F, Renzo AD, Maio FPD (2010) A semi-empirical model for the drag force and fluid–particle interaction in polydisperse suspensions. Chem Eng Sci 65(10):3128–3139

    Article  CAS  Google Scholar 

  116. Beetstra R, van der Hoef MA, Kuipers JAM (2007) Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J 53(2):489–501

    Article  CAS  ADS  Google Scholar 

  117. Tenneti S, Garg R, Subramaniam S (2011) Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int J Multiph Flow 37(9):1072–1092

    Article  CAS  Google Scholar 

  118. Rong LW, Dong KJ, Yu AB (2013) Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: effect of porosity. Chem Eng Sci 99:44–58

    Article  CAS  Google Scholar 

  119. Zaidi AA, Tsuji T, Tanaka T (2014) A new relation of drag force for high Stokes number monodisperse spheres by direct numerical simulation. Adv Powder Technol 25(6):1860–1871

    Article  Google Scholar 

  120. Bogner S, Mohanty S, Rüde U (2015) Drag correlation for dilute and moderately dense fluid–particle systems using the lattice Boltzmann method. Int J Multiph Flow 68:71–79

    Article  MathSciNet  CAS  Google Scholar 

  121. Tang Y, Peters EAJF, Kuipers JAM, Kriebitzsch SHL, van der Hoef MA (2015) A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J 61(2):688–698

    Article  CAS  ADS  Google Scholar 

  122. Zhou Q, Fan L-S (2015) Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres. J Fluid Mech 765:396–423

    Article  MathSciNet  CAS  ADS  Google Scholar 

  123. Sheikh B, Qiu T (2018) Pore-scale simulation and statistical investigation of velocity and drag force distribution of flow through randomly-packed porous media under low and intermediate Reynolds numbers. Comput Fluids 171:15–28

    Article  MathSciNet  Google Scholar 

  124. Kravets B, Rosemann T, Reinecke SR, Kruggel-Emden H (2019) A new drag force and heat transfer correlation derived from direct numerical LBM-simulations of flown through particle packings. Powder Technol 345:438–456

    Article  CAS  Google Scholar 

  125. Ishii M, Mishima K (1984) Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des 82(2):107–126

    Article  CAS  Google Scholar 

  126. Paladino EE (2005) Estudo do escoamento multifásico em medidores de vazão do tipo pressão diferencial. Universidade Federal de Santa Catarina, Brazil

  127. Lewis DA, Davidson JF (1985) Pressure drop for bubbly gas–liquid flow through orifice plates and nozzles. Chem Eng Res Des 63:149–156

    CAS  Google Scholar 

  128. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(2):385–400

    Article  ADS  Google Scholar 

  129. Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite reynolds number. Int J Multiph Flow 18(1):145–147

    Article  CAS  Google Scholar 

  130. Zhao Z, Zhou L, Bai L, Lv W, Agarwal RK (2023) Effects of particle diameter and inlet flow rate on gas–solid flow patterns of fluidized bed. ACS Omega 8(7): 7151–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chan EL, Washino K (2018) Coarse grain model for DEM simulation of dense and dynamic particle flow with liquid bridge forces (in English). Chem Eng Res Des 132:1060–1069

    Article  CAS  Google Scholar 

  132. Olaleye AK, Shardt O, Walker GM, Van den Akker HEA (2019) Pneumatic conveying of cohesive dairy powder: experiments and CFD–DEM simulations (in English). Powder Technol 357:193–213

    Article  CAS  Google Scholar 

  133. Sorace CM, Louge MY, Crozier MD, Law VHC (2009) High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed (in English). Mech Res Commun 36(3):364–368

    Article  Google Scholar 

  134. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments (in English). Chem Eng Sci 62(13):3378–3396

    Article  CAS  Google Scholar 

  135. Akhshik S, Behzad M, Rajabi M (2015) CFD–DEM approach to investigate the effect of drill pipe rotation on cuttings transport behavior. J Petrol Sci Eng 127:229–244

    Article  CAS  Google Scholar 

  136. Bai L, Zhao Z, Lv W, Zhou L (2023) Gas–solid flow characteristics of fluidized bed with binary particles. Powder Technol 416

  137. DEM–CFD coupling technical manual 2021

  138. Antypov D, Elliott JA (2011) On an analytical solution for the damped Hertzian spring. Europhys Lett Assoc 94(5): 50004

    Article  ADS  Google Scholar 

  139. Vivacqua V, López A, Hammond R, Ghadiri M (2019) DEM analysis of the effect of particle shape, cohesion and strain rate on powder rheometry. Powder Technol 342:653–663

    Article  CAS  Google Scholar 

  140. de Almeida E, Spogis N, Taranto OP, Silva MA (2019) Theoretical study of pneumatic separation of sugarcane bagasse particles (in English). Biomass Bioenergy 127: 105206

    Article  Google Scholar 

  141. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20(3):327–344

    Article  MathSciNet  Google Scholar 

  142. Zhang X, Vu-Quoc L (2000) Simulation of chute flow of soybeans using an improved tangential force–displacement model. Mech Mater 32(2):115–129

    Article  Google Scholar 

  143. Łukaszuk J, Molenda M, Horabik J, Wiącek J (2009) Method of measurement of coefficient of friction between pairs of metallic and organic objects. Acta Agrophys 13(2):407–418

    Google Scholar 

  144. Lambert P, Chau A, Delchambre A, Régnier S (2008) Comparison between two capillary forces models. Langmuir 24(7):3157–3163

    Article  CAS  PubMed  Google Scholar 

  145. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc A 324(1558):301–313

    CAS  Google Scholar 

  146. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  CAS  ADS  Google Scholar 

  147. Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58(1):2–13

    Article  CAS  ADS  Google Scholar 

  148. Muller VM, Yushchenko VS, Derjaguin BV (1980) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interface Sci 77(1):91–101

    Article  CAS  ADS  Google Scholar 

  149. Delnoij E (1999) Fluid dynamics of gas–liquid bubble columns a theoretical and experimental study. Ph. D, Twente University

  150. Xu BH, Yu AB (1997) Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52(16):2785–2809

    Article  CAS  Google Scholar 

  151. Zhao J, Shan T (2013) Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technol 239:248–258

    Article  CAS  Google Scholar 

  152. Zhu HP, Yu AB (2003) The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow. Physica A 325(3–4):347–360

    Article  MathSciNet  ADS  Google Scholar 

  153. Wee Chuan Lim E, Wang C-H, Yu A-B (2006) Discrete element simulation for pneumatic conveying of granular material. AIChE J 52(2):496–509

    Article  ADS  Google Scholar 

  154. Alobaid F, Epple B (2013) Improvement, validation and application of CFD/DEM model to dense gas–solid flow in a fluidized bed. Particuology 11(5):514–526

    Article  Google Scholar 

  155. Alobaid F, Ströhle J, Epple B (2013) Extended CFD/DEM model for the simulation of circulating fluidized bed. Adv Powder Technol 24(1):403–415

    Article  Google Scholar 

  156. Khawaja HA, Scott SA, Virk MS, Moatamedi M (2012) Quantitative analysis of accuracy of voidage computations in CFD–DEM simulations. J Comput Multiph Flows 4(2):183–192

    Article  MathSciNet  Google Scholar 

  157. Wu CL, Zhan JM, Li YS, Lam KS, Berrouk AS (2009) Accurate void fraction calculation for three-dimensional discrete particle model on unstructured mesh (in English). Chem Eng Sci 64(6):1260–1266

    Article  CAS  Google Scholar 

  158. Wu CL, Berrouk AS, Nandakumar K (2009) Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh. Chem Eng J 152(2–3):514–529

    Article  CAS  Google Scholar 

  159. Hilton JE, Mason LR, Cleary PW (2010) Dynamics of gas–solid fluidised beds with non-spherical particle geometry. Chem Eng Sci 65(5):1584–1596

    Article  CAS  Google Scholar 

  160. Freireich B, Kodam M, Wassgren C (2010) An exact method for determining local solid fractions in discrete element method simulations. AIChE J 56(12):3036–3048

    Article  CAS  ADS  Google Scholar 

  161. Hobbs A (2009) Simulation of an aggregate dryer using coupled CFD and DEM methods. Int J Comput Fluid Dyn 23(2):199–207

    Article  Google Scholar 

  162. Peng Z, Moghtaderi B, Doroodchi E (2016) A modified direct method for void fraction calculation in CFD–DEM simulations. Adv Powder Technol 27(1):19–32

    Article  Google Scholar 

  163. Fries L, Antonyuk S, Heinrich S, Palzer S (2011) DEM–CFD modeling of a fluidized bed spray granulator. Chem Eng Sci 66(11):2340–2355

    Article  CAS  Google Scholar 

  164. Gui N, Fan JR, Luo K (2008) DEM–LES study of 3-D bubbling fluidized bed with immersed tubes. Chem Eng Sci 63(14):3654–3663

    Article  CAS  Google Scholar 

  165. Ma S, Wei Z, Chen X (2018) CFD–DEM combined the fictitious domain method with Monte Carlo method for studying particle sediment in fluid. Part Sci Technol 36(8):920–933

    Article  CAS  Google Scholar 

  166. Tsuji Y, Tanaka T, Yonemura S (1998) Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model). Powder Technol 95(3):254–264

    Article  CAS  Google Scholar 

  167. Wang Z, Teng Y, Liu M (2019) A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy. J Comput Phys 384:151–169

    Article  MathSciNet  ADS  Google Scholar 

  168. Deb S, Tafti DK (2013) A novel two-grid formulation for fluid–particle systems using the discrete element method. Powder Technol 246:601–616

    Article  CAS  Google Scholar 

  169. Link JM, Cuypers LA, Deen NG, Kuipers JAM (2005) Flow regimes in a spout–fluid bed: a combined experimental and simulation study. Chem Eng Sci 60(13):3425–3442

    Article  CAS  Google Scholar 

  170. Zhao Z, Zhou L, Bai L, El-Emam MA, Agarwal R (2023) Modeling and validation of coarse-grained computational fluid dynamics–discrete element method for dense gas–solid flow simulation in a bubbling fluidized bed. Phys Fluids 35(4): 043310

    Google Scholar 

  171. Marijian B (1997) Average balance equations for granular materials. Int J Eng Sci 35(5):523–548

    Article  MathSciNet  Google Scholar 

  172. Xiao H, Sun J (2011) Algorithms in a robust hybrid CFD–DEM solver for particle-laden flows. Commun Comput Phys 9(2):297–323

    Article  MathSciNet  Google Scholar 

  173. Zhu HP, Yu AB (2002) Averaging method of granular materials. Phys Rev E Stat Nonlinear Soft Matter Phys 66(2 Pt 1):021302

    Article  CAS  ADS  Google Scholar 

  174. Sun J, Xiao H, Gao D (2009) Numerical study of segregation using multiscale models. Int J Comput Fluid Dyn 23(2):81–92

    Article  Google Scholar 

  175. Clarke DA, Sederman AJ, Gladden LF, Holland DJ (2018) Investigation of void fraction schemes for use with CFD–DEM simulations of fluidized beds. Ind Eng Chem Res 57(8):3002–3013

    Article  CAS  Google Scholar 

  176. Boyce CM, Holland DJ, Scott SA, Dennis JS (2015) Limitations on fluid grid sizing for using volume-averaged fluid equations in discrete element models of fluidized beds. Ind Eng Chem Res 54(43):10684–10697

    Article  CAS  Google Scholar 

  177. Alobaid F (2015) A particle–grid method for Euler–Lagrange approach. Powder Technol 286:342–360

    Article  CAS  Google Scholar 

  178. Rabadan Santana E, Pozzetti G, Peters B (2019) Application of a dual-grid multiscale CFD–DEM coupling method to model the raceway dynamics in packed bed reactors. Chem Eng Sci 205:46–57

    Article  CAS  Google Scholar 

  179. Su J, Gu Z, Chen C, Xu XY (2015) A two-layer mesh method for discrete element simulation of gas–particle systems with arbitrarily polyhedral mesh. Int J Numer Methods Eng 103(10):759–780

    Article  MathSciNet  Google Scholar 

  180. Jing L, Kwok CY, Leung YF, Sobral YD (2016) Extended CFD–DEM for free-surface flow with multi-size granules. Int J Numer Anal Methods Geomech 40(1):62–79

    Article  CAS  Google Scholar 

  181. Wu L, Gong M, Wang J (2018) Development of a DEM–VOF model for the turbulent free-surface flows with particles and its application to stirred mixing system. Ind Eng Chem Res 57(5):1714–1725

    Article  CAS  Google Scholar 

  182. Kuang SB, Chu KW, Yu AB, Zou ZS, Feng YQ (2008) Computational investigation of horizontal slug flow in pneumatic conveying. Ind Eng Chem Res 47(2):470–480

    Article  CAS  Google Scholar 

  183. Sutkar VS et al (2013) Numerical investigations of a pseudo-2D spout fluidized bed with draft plates using a scaled discrete particle model. Chem Eng Sci 104:790–807

    Article  CAS  Google Scholar 

  184. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Prog Comput Fluid Dyn 12(2–3):140–152

    Article  MathSciNet  Google Scholar 

  185. Sun R, Xiao H (2015) Diffusion-based coarse graining in hybrid continuum–discrete solvers: theoretical formulation and a priori tests. Int J Multiph Flow 77:142–157

    Article  MathSciNet  CAS  Google Scholar 

  186. Cook BK, Noble DR, Williams JR (2004) A direct simulation method for particle–fluid systems. Eng Comput 21(2/3/4):151–168

    Article  Google Scholar 

  187. Lominé F, Scholtès L, Sibille L, Poullain P (2013) Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion. Int J Numer Anal Meth Geomech 37(6):577–596

    Article  Google Scholar 

  188. Harshani HMD, Galindo-Torres SA, Scheuermann A, Muhlhaus HB (2015) Micro-mechanical analysis on the onset of erosion in granular materials. Philos Mag 95(28–30):3146–3166

    Article  CAS  ADS  Google Scholar 

  189. Solnordal C et al (2014) Parallel resolved open source CFD–DEM: method, validation and application. J Comput Multiph Flows 6(1):13–28

    Article  Google Scholar 

  190. Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476

    Article  MathSciNet  ADS  Google Scholar 

  191. Haeri S, Shrimpton JS (2012) On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int J Multiph Flow 40:38–55

    Article  CAS  Google Scholar 

  192. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique. J Comput Phys 169(2):427–462

    Article  MathSciNet  CAS  ADS  Google Scholar 

  193. Choi CR, Kim CN (2010) Direct numerical simulations of the dynamics of particles with arbitrary shapes in shear flows. J Hydrodyn 22(4):456–465

    Article  Google Scholar 

  194. Hyman MA (1952) Non-iterative numerical solution of boundary-value problems. Appl Sci Res 2(1):325–351

    Article  MathSciNet  Google Scholar 

  195. Yang Q, Cheng K, Wang Y, Ahmad M (2019) Improvement of semi-resolved CFD–DEM model for seepage-induced fine-particle migration: eliminate limitation on mesh refinement. Comput Geotech 110:1–18

    Article  ADS  Google Scholar 

  196. Cheng K, Wang Y, Yang Q (2018) A semi-resolved CFD–DEM model for seepage-induced fine particle migration in gap-graded soils. Comput Geotech 100:30–51

    Article  Google Scholar 

  197. Shirgaonkar AA, MacIver MA, Patankar NA (2009) A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J Comput Phys 228(7):2366–2390

    Article  MathSciNet  ADS  Google Scholar 

  198. Yang S, Luo K, Fang M, Zhang K, Fan J (2014) Parallel CFD–DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate. Chem Eng J 236:158–170

    Article  CAS  Google Scholar 

  199. Chen Z, Lim CJ, Grace JR (2008) Hydrodynamics of slot-rectangular spouted beds: effect of slot configuration on the local flow structure. Can J Chem Eng 86(3):598–604

    Article  CAS  Google Scholar 

  200. Ren B, Zhong W, Jin B, Yuan Z, Lu Y (2011) Computational fluid dynamics (CFD)–discrete element method (DEM) simulation of gas–solid turbulent flow in a cylindrical spouted bed with a conical base. Energy Fuels 25(9):4095–4105

    Article  CAS  Google Scholar 

  201. Tsuji T, Yabumoto K, Tanaka T (2008) Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation. Powder Technol 184(2):132–140

    Article  CAS  Google Scholar 

  202. Bokkers GA, van Sint Annaland M, Kuipers JAM (2004) Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technol 140(3):176–186

    Article  CAS  Google Scholar 

  203. Kong D, Wang S, Luo K, Yu J, Fan J (2023) Bubble dynamics and thermochemical characteristics of bubbling fluidized bed methanation. Fuel 338: 127292

    Article  Google Scholar 

  204. Kang P, Yuan H, Han L, Zhou Y (2023) Insight into hydrodynamics and heat transfer characteristics in a gas–solid spout fluidized bed from a multiple zone view. Appl Thermal Eng 221: 119800

    Article  CAS  Google Scholar 

  205. Hwang IS, Sohn J, Lee UD, Hwang J (2021) CFD–DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: effects of equivalence ratio and fluidization number (in English). Energy 219: 119533

    Article  CAS  Google Scholar 

  206. Mansourpour Z, Karimi S, Zarghami R, Mostoufi N, Sotudeh-Gharebagh R (2010) Insights in hydrodynamics of bubbling fluidized beds at elevated pressure by DEM–CFD approach (in English). Particuology 8(5):407–414

    Article  CAS  Google Scholar 

  207. Tang T, He Y, Tai T, Wen D (2017) DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. Chem Eng Sci 172:79–99

    Article  CAS  Google Scholar 

  208. Wang S, Luo K, Yang S, Hu C, Fan J (2017) Parallel LES–DEM simulation of dense flows in fluidized beds. Appl Therm Eng 111:1523–1535

    Article  Google Scholar 

  209. Olaofe OO, van der Hoef MA, Kuipers JAM (2011) Bubble formation at a single orifice in a 2D gas-fluidized bed. Chem Eng Sci 66(12):2764–2773

    Article  CAS  Google Scholar 

  210. Wang J, van der Hoef MA, Kuipers JAM (2010) CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds. Chem Eng Sci 65(12):3772–3785

    Article  CAS  Google Scholar 

  211. Yue YH, Wang S, Shen YS (2021) Gas–solid mixing and heat transfer performance in alternating spout deflection (in English). Chem Eng Sci 234: 116446

    Google Scholar 

  212. Raman R, Mollick PK, Goswami PS (2022) Computational fluid dynamics-discrete element method studies on dynamics and segregation in spouted bed with polydispersed particles. Ind Eng Chem Res 61(26):9474–9488

    Article  CAS  Google Scholar 

  213. He M, Zhao B, Wang J (2022) Particle pressures in gas-fluidized beds: a computational fluid dynamics-discrete element method study. Ind Eng Chem Res 61(26):9489–9497

    Article  CAS  Google Scholar 

  214. Tsuo YP, Tsuo YP (1990) Computation of flow patterns in circulating fluidized beds. AIChE J 36(6):885–896

    Article  CAS  ADS  Google Scholar 

  215. Yuu S, Nishikawa H, Umekage T (2001) Numerical simulation of air and particle motions in group-B particle turbulent fluidized bed. Powder Technol 118(1–2):32–44

    Article  CAS  Google Scholar 

  216. Zhang MH, Chu KW, Wei F, Yu AB (2008) A CFD–DEM study of the cluster behavior in riser and downer reactors. Powder Technol 184(2):151–165

    Article  CAS  Google Scholar 

  217. Zhao Y, Ding Y, Wu C, Cheng Y (2010) Numerical simulation of hydrodynamics in downers using a CFD–DEM coupled approach. Powder Technol 199(1):2–12

    Article  CAS  Google Scholar 

  218. Zhao Y, Cheng Y, Wu C, Ding Y, Jin Y (2010) Eulerian–Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer. Particuology 8(1):44–50

    Article  CAS  Google Scholar 

  219. Gu C et al (2023) CFD–DEM simulation of distribution and agglomeration characteristics of bendable chain-like biomass particles in a fluidized bed reactor. Fuel 340: 127570

    Article  CAS  Google Scholar 

  220. Wang C, Liu G, Zhai Z, Guo X, Wu Y (2023) CFD–DEM study on the interaction between triboelectric charging and fluidization of particles in gas–solid fluidized beds. Powder Technol 419: 118340

    Article  CAS  Google Scholar 

  221. Wu M, Khinast JG, Radl S (2018) The effect of liquid bridge model details on the dynamics of wet fluidized beds. AIChE J 64(2):437–456

    Article  CAS  ADS  Google Scholar 

  222. Gibilaro LG, Rowe PN (1974) A model for a segregating gas fluidised bed. Chem Eng Sci 29(6):1403–1412

    Article  CAS  Google Scholar 

  223. Clift R, Grace JR, Cheung L, Do TH (1972) Gas and solids motion around deformed and interacting bubbles in fluidized beds. J Fluid Mech 1(11):187–205

    Article  ADS  Google Scholar 

  224. Lacey PMC (1954) Developments in the theory of particle mixing. J Appl Chem 4(5):257–268

    Article  CAS  Google Scholar 

  225. Zhang Y, Jin B, Zhong W, Ren B, Xiao R (2010) DEM simulation of particle mixing in flat-bottom spout-fluid bed. Chem Eng Res Des 88(5–6):757–771

    Article  CAS  Google Scholar 

  226. Wang S, Fu Y, Zhao Y, Dong L, Chen Z (2022) Effect of bed density on the segregation behavior of fine coal particles (< 6 mm) in a gas–solid separation fluidized bed. Powder Technol 395:872–882

    Article  CAS  Google Scholar 

  227. Wang B, Tang T, Yan S, He Y (2022) Magnetic segregation behaviors of a binary mixture in fluidized beds. Powder Technol 397: 117031

    Google Scholar 

  228. Zhong W, Xiong Y, Yuan Z, Zhang M (2006) DEM simulation of gas–solid flow behaviors in spout-fluid bed. Chem Eng Sci 61(5):1571–1584

    Article  CAS  Google Scholar 

  229. Zhou H, Flamant G, Gauthier D (2004) DEM-LES of coal combustion in a bubbling fluidized bed. Part I: gas–particle turbulent flow structure. Chem Eng Sci 59(20):4193–4203

    Article  CAS  Google Scholar 

  230. Zhou L, Zhao Y (2021) CFD–DEM simulation of fluidized bed with an immersed tube using a coarse-grain model. Chem Eng Sci 231: 116290

    Article  Google Scholar 

  231. Lin J, Luo K, Wang S, Hu C, Fan J (2020) An augmented coarse-grained CFD–DEM approach for simulation of fluidized beds. Adv Powder Technol 31(10):4420–4427

    Article  CAS  Google Scholar 

  232. Wu W, Duan L, Li L, Liu D (2022) Investigation on a single char particle movement behavior in a bubbling fluidized bed under high temperature. Fuel Process Technol 236: 107412

    Article  Google Scholar 

  233. Zhang Y et al (2019) Experimental and Eulerian–Lagrangian–Lagrangian study of binary gas–solid flow containing particles of significantly different sizes (in English). Renew Energy 136:193–201

    Article  CAS  Google Scholar 

  234. Nijssen TMJ, Kuipers HAM, van der Stel J, Adema AT, Buist KA (2020) Complete liquid–solid momentum coupling for unresolved CFD–DEM simulations. Int J Multiph Flow 132: 103425

    Article  Google Scholar 

  235. Mema I, Mahajan VV, Fitzgerald BW, Padding JT (2019) Effect of lift force and hydrodynamic torque on fluidisation of non-spherical particles. Chem Eng Sci 195:642–656

    Article  CAS  Google Scholar 

  236. Zhou L et al (2017) Experimental study and transient CFD/DEM simulation in a fluidized bed based on different drag models (in English). RSC Adv 7(21):12764–12774

    Article  CAS  ADS  Google Scholar 

  237. Agrawal V, Shinde Y, Shah MT, Utikar RP, Pareek VK, Joshi JB (2018) Effect of drag models on CFD–DEM predictions of bubbling fluidized beds with Geldart D particles. Adv Powder Technol 29(11):2658–2669

    Article  Google Scholar 

  238. Kuwagi K, Takeda H, Horio M (2004) An approach to large-scale discrete element (DEM) simulation. In: Presented at the in proceedings of the fluidization XI, Ischia, Italy, 2004

  239. Washino K, Hsu C-H, Kawaguchi T, Tsuji Y (2007) Similarity model for DEM simulation of fluidized bed. J Soc Powder Technol 44:1319–1335

    Article  Google Scholar 

  240. Benyahia S, Galvin JE (2010) Estimation of numerical errors related to some basic assumptions in discrete particle methods. Ind Eng Chem Res 49(21):10588–10605

    Article  CAS  Google Scholar 

  241. Sakai M, Yamada Y, Shigeto Y, Shibata K, Kawasaki VM, Koshizuka S (2010) Large-scale discrete element modeling in a fluidized bed. Int J Numer Methods Fluids 64(10–12):1319–1335

    Article  Google Scholar 

  242. Hilton JE, Cleary PW (2012) Comparison of resolved and coarse grain DEM models for gas flow through particle beds. In: Proceedings of the ninth international conference on CFD in the minerals and process industries, Melbourne, Australia, 2012, pp 1–6

  243. Takabatake K, Mori Y, Khinast JG, Sakai M (2018) Numerical investigation of a coarse-grain discrete element method in solid mixing in a spouted bed (in English). Chem Eng J 346:416–426

    Article  CAS  Google Scholar 

  244. Mu L, Buist KA, Kuipers JAM, Deen NG (2020) Scaling method of CFD–DEM simulations for gas–solid flows in risers. Chem Eng Sci X 6: 100054

    Article  Google Scholar 

  245. Tausendschön J, Kolehmainen J, Sundaresan S, Radl S (2020) Coarse graining Euler–Lagrange simulations of cohesive particle fluidization. Powder Technol 364:167–182

    Article  Google Scholar 

  246. Cai R, Zhao Y (2020) An experimentally validated coarse-grain DEM study of monodisperse granular mixing. Powder Technol 361:99–111

    Article  CAS  Google Scholar 

  247. Andrews MJ, O’Rourke PJ (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiph Flow 22(2):379–402

    Article  CAS  Google Scholar 

  248. Sakai M, Koshizuka S (2009) Large-scale discrete element modeling in pneumatic conveying. Chem Eng Sci 64(3):533–539

    Article  CAS  Google Scholar 

  249. Bierwisch C, Kraft T, Riedel H, Moseler M (2009) Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. J Mech Phys Solids 57(1):10–31

    Article  ADS  Google Scholar 

  250. Mokhtar MA, Kuwagi K, Takami T, Hirano H, Horio M (2011) Validation of the similar particle assembly (SPA) model for the fluidization of Geldart’s group A and D particles. AIChE J 58(1):87–98

    Article  ADS  Google Scholar 

  251. Liu Z, Tsuji T, Tanaka T (2013) Use of similarities in CFD–DEM simulation of fluidized bed. Presented at the the 14th international conference on fluidization, Netherlands, 2013

  252. Feng YT, Owen DRJ (2014) Discrete element modelling of large scale particle systems—I: exact scaling laws. Comput Part Mech 1(2):159–168

    Article  Google Scholar 

  253. Hilton JE, Cleary PW (2014) Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Appl Math Model 38(17–18):4197–4214

    Article  MathSciNet  Google Scholar 

  254. Lu L, Xu J, Ge W, Yue Y, Liu X, Li J (2014) EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows. Chem Eng Sci 120:67–87

    Article  CAS  Google Scholar 

  255. Chu K, Chen J, Yu A (2016) Applicability of a coarse-grained CFD–DEM model on dense medium cyclone. Miner Eng 90:43–54

    Article  CAS  Google Scholar 

  256. Wang X, Chen K, Kang T, Ouyang J (2020) A dynamic coarse grain discrete element method for gas–solid fluidized beds by considering particle-group crushing and polymerization. Appl Sci 10(6): 1943

    Google Scholar 

  257. Washino K, Chan EL, Kaji T, Matsuno Y, Tanaka T (2021) On large scale CFD–DEM simulation for gas–liquid–solid three-phase flows. Particuology 59:2–15

    Article  CAS  Google Scholar 

  258. Zhao X, Jiang Y, Li F, Ullah A, Wang W (2022) A scaled MP-PIC method for bubbling fluidized beds. Powder Technol 404: 117501

    Google Scholar 

  259. Ye Y, Xu J, Ge W (2023) Soft coarse-grained particle model for particle–fluid systems. Particuology 84:178–193

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 52079058 and 52209113), Natural Science Foundation of Jiangsu Province (Grant no. BK20220544), China Postdoctoral Science Foundation (Grant no. 2023M731367) and Jiangsu Excellent Postdoctoral Funding Program (Grant no. 2022ZB641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Tables 7 and 8.

Table 7 Relationship between coarsening ratio and computational efficiency in the literature a
Table 8 Scale laws used for CG CFD–DEM models in the literature a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhou, L., Bai, L. et al. Recent Advances and Perspectives of CFD–DEM Simulation in Fluidized Bed. Arch Computat Methods Eng 31, 871–918 (2024). https://doi.org/10.1007/s11831-023-10001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-10001-6

Navigation