Skip to main content
Log in

The nature of chemical bonding in nitramide

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The spatial and electronic structure studies of nitramide NH2NO2 suggest that the change in its molecular geometry upon transition from the gas phase to the condensed state is caused by an increase in the contribution of conjugation between functional groups. According to the analysis of the Bader atomic charges, the effects of such conjugation are to a considerable extent governed by intramolecular charge transfer from the amino to the nitro group. From estimation of the contribution of conjugation to the charge transfer it follows that conjugation remains in the isolated molecule. The influence of hydrogen bonding on the increase in the contribution of conjugation and the corresponding charge redistribution in the molecule was considered. Despite the presence of conjugation between functional groups, the planar configuration of the molecule in the crystal is not realized and the crystallographic twofold axis corresponds to superposition of two molecular configurations with C s symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Lobanova, S. G. Il’yasov, G. V. Sakovich, Usp. Khim., 2010, 79, 894 [Russ. Chem. Rev. (Engl. Transl.), 2010, 79].

    Google Scholar 

  2. N. I. Sadova, G. E. Slepnev, N. A. Tarasenko, A. A. Zen- kin, L. V. Vilkov, I. F. Shishkov, Yu. A. Pankrushev, Zh. Strukt. Khim., 1977, 18, 865 [J. Struct. Chem. (USSR), 1977, 18].

    CAS  Google Scholar 

  3. A. Haussler, T. M. Klapotke, H. Piotrowski, Z. Naturforsch., 2002, 57b, 151.

    Google Scholar 

  4. R. Boese, M. Yu. Antipin, D. Blaser, K. A. Lyssenko, J. Phys. Chem., 1998, B102, 8654.

    Google Scholar 

  5. A. A. Korlyukov, K. A. Lyssenko, M. Yu. Antipin, V. N. Kirin, E. A. Chernyshev, S. P. Knyazev, Inorg. Chem., 2002, 41, 5043.

    Article  CAS  Google Scholar 

  6. K. R. Leopold, M. Canagaratna, J. A. Phillips, Acc. Chem. Res., 1997, 30, 57.

    Article  CAS  Google Scholar 

  7. R. F. W. Bader, Atoms In Molecules. A Quantum Theory, Clarendron Press, Oxford, 1990.

    Google Scholar 

  8. V. G. Tsirelson, R. P. Ozerov, Electron density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry, IOP Publishing Ltd., 1996.

  9. I. S. Bushmarinov, K. A. Lyssenko, M. Yu. Antipin, Usp. Khim., 2009, 78, 307 [Russ. Chem. Rev. (Engl. Transl.), 2009, 78].

    Google Scholar 

  10. S. Tellier-Pollon, J. Heubel, Rev. Chimie minerale, 1967, 4, 413.

    CAS  Google Scholar 

  11. G. M. Sheldrick, SHELXTL-97, Version 5.10, Bruker AXS Inc., Madison, WI-53719, USA.

  12. A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. Mallinson, T. Richter, T. Koritsanszky, XD2006 — A Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental and Theoretical Structure Factors, 2006.

  13. F. L. Hirshfeld, Acta. Crystallogr., 1976, A32, 239.

    Google Scholar 

  14. D. A. Kirzhnits, Yu. E. Lozovik, G. V. Shptakovskaya, Usp. Fiz. Nauk, 1975, 117, 3 (in Russian).

    Article  CAS  Google Scholar 

  15. A. Stash, V. Tsirelson, WinXPRO, A program for Calculation of the Crystal and Molecular properties Using the Model Electron Density, 2001; A. Stash, V. G. Tsirelson, Acta Crystallogr., 2002, 35, 371.

  16. A. E. Whitten, M. A. Spackman, Acta Crystallogr., 2006, B62, 875.

    CAS  Google Scholar 

  17. K. E. Riley, M. Pitonak, P. Jureska, P. Hobza, Chem. Rev., 2010, 110, 5023.

    Article  CAS  Google Scholar 

  18. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215; Y. Zhao, D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157.

    Article  CAS  Google Scholar 

  19. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.

    Article  CAS  Google Scholar 

  20. A. A. Korlyukov, V. N. Khrustalev, A. V. Vologzhanina, K. A. Lyssenko, M. S. Nechaev, M. Yu. Antipin, Acta Crystallogr., 2011, B67, 315.

    CAS  Google Scholar 

  21. T. A. Keith, AIMAll (Version 08.01.25), 2008, http://aim.tkgristmill.com.

  22. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett., 2008, 100, 136406.

    Article  Google Scholar 

  23. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169; G. Kresse, J. Hafner, Phys. Rev. B, 1993, 47, 558

    Article  Google Scholar 

  24. G. Kresse, J. Furthmuller, Comput. Mat. Sci., 1996, 6, 15.

    Article  CAS  Google Scholar 

  25. G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758.

    Article  CAS  Google Scholar 

  26. CSD version 5.32 (November 2010).

  27. K. A. Lyssenko, M. Yu. Antipin, Izv. Akad. Nauk, Ser. Khim., 2006, 1 [Russ. Chem. Bull., Int. Ed., 2006, 55, 1].

  28. K. A. Lyssenko, M. Yu. Antipin, Izv. Akad. Nauk, Ser. Khim., 2001, 400 [Russ. Chem. Bull., Int. Ed., 2001, 50, 418].

  29. A. Meents, B. Dittrich, S. K. J. Johnas, V. Thome, E. F. Weeckert, Acta Crystallogr., 2008, B64, 42.

    CAS  Google Scholar 

  30. M. A. Spackman, Chem. Rev., 1992, 92, 1769.

    Article  CAS  Google Scholar 

  31. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Letts., 1998, 285, 170

    Article  CAS  Google Scholar 

  32. E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Letts., 2001, 336, 457.

    Article  CAS  Google Scholar 

  33. L. N. Puntus, K. A. Lyssenko, M. Yu. Antipin, J.-C. G. Bünzli, Inorg. Chem., 2008, 47, 11095

    Article  CAS  Google Scholar 

  34. K. A. Lyssenko, Yu. V. Nelyubina, R. G. Kostyanovsky, M. Yu. Antipin, Chem. Phys. Chem., 2006, 7, 2453

    Article  CAS  Google Scholar 

  35. Yu. V. Nelyubina, I. V. Glukhov, M. Yu. Antipin, K.A. Lyssenko, Chem. Commun., 2010, 46, 3469

    Article  CAS  Google Scholar 

  36. Yu. V. Nelyubina, M. Yu. Antipin, I. A. Cherepanov, K. A. Lyssenko, Cryst. Eng. Commun., 2010, 12, 77.

    CAS  Google Scholar 

  37. E. S. Dolmalski, W. H. Evans, E. D Hearing, J. Phys. Chem. Ref. Data, 1984, 13,Suppl. 1, 1990, 19, 881.

    Google Scholar 

  38. X. Fradera, M. A. Austen, R. F. W. Bader, J. Phys. Chem. A, 1999, 103, 304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Lyssenko.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2120–2132, November, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananyev, I.V., Nelyubina, Y.V., Korlyukov, A.A. et al. The nature of chemical bonding in nitramide. Russ Chem Bull 60, 2161–2174 (2011). https://doi.org/10.1007/s11172-011-0334-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0334-1

Key words

Navigation